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L ecture 4. Frozen-in Flux in Magnetohydrodynamic Plasma

The so-called ideal magnetohydrodynamic (MHD) plasma model is a model designed for
studying low-frequency long-wavelength plasma phenomena.

Ohm’s Law in MHD limit (i.e., in low-frequency, long-wavelength limit) can be written as
E+VxB=0.

Exercise4.1.

(& Show that electrostatic potential is constant along streamline and magnetic filed line
in steady-state MHD plasma. (i.e., Constant potential surface is determined by a
set of streamlines and magnetic field lines in steady-state MHD plasma.)

(b) What will happen if thereis a potential difference along magnetic field linein MHD
plasma?

(c) What will happen if thereis a potential difference along streamlinein MHD plasma?

In this lecture, we shall use two different approaches to show that if a plasma fluid satisfies
E + V xB =0 then the magnetic flux is frozen in the plasma, i.e.,
dd, d
—8 = — [ ] B(x,t)-da=0 4.1

=g JswBOuD (4.1)
where d/dt isaphysical notation (but not amathematical notation) of time derivativesaong
the path of afluid e ement.

The following three equations are the sufficient conditions of Eq.(4.1).

E+VxB=0 (MHD Ohm’s Law, or MHD approximation) (4.2)
V-B=0 (No magnetic monopole) (4.3
VXE= —0;—? (Faraday’s Law) (4.4)

4.1. Proof of Frozen-in Flux (Method 1)

By definition, variation of magnetic flux along the path line of fluid elementsis
4y _d [ g garyi )], Boxt+an-da-] | B(x-da
dt ato s o ] At

(4.5

Since V-B=0,ityields

0=]]] V-Bd®x=4}B(x,t+At)- da
= f JS(HM)B(X,HAt)- da— f fsmB(x,tJrAt)- da+d.)B(x,t+At)- (dl x VAL)

=] Jo Bty da- | [ Bot+AD-da+ddi- [VAtxBx.t+AD)]

or
J JS(HM)B(X,HAt)-da:J Js«)B(X’HAt)'da_dDdl'[VAtXB(X,HAt)] (4.6)

where the corresponding surface integrations are sketched in Figure 4.1.
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/~

V(s)At dl  V(s+As)At
dl=r(s+As)-r(s)

Figure 4.1. Sketches of surface integration domain discussed in Eq. (4.6).

Substituting Eq. (4.6) into Eq. (4.5) yields

o, _| sy BOGEHAD-da— | | B(xt)-da
dt Alt—>0 At
i [J Is(t)B(x,t+At). da—(ﬁdl-[VAtx B(x,t+At)]] - f fsmB(X’t)' da
=lm
At—0 .[ J At (47)
, -B(x,t)]-d
=lim s B0t 49 7B a—(j)dl-(VxB)
At—=0 At
- JS‘;—?- da—ddi- (v xB)

Substituting Eq. (4.4) into Eq. (4.7) and then substituting EQ. (4.2) into the resulting equation,
ityields

d:iB - Sao_)—?-da—ggdl-(VxB)
~ [ [ (-vxE)-da-di-(vxB)
~dd-E)-Jd-(vxB) 4.8)
—d-(vxB)-dd - (vxB)
0

Since, Eq. (4.8) is consistent with Eqg. (4.1), we have successfully proved that the magnetic
flux isfrozen in MHD plasma.

4.2. Proof of Frozen-in Flux (Method 2)

Since V-B=0, wecanlet

B=VxA (4.9)

Substituting Eq. (4.9) into Eq. (4.4) becomes

E®Y =—07—A (4.10)
ot

Since E®=-V®, thetota electric field can be written as
E=E™ +E®=—(9A /J) - VD
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or
OA [dt=-E -V (4.11)

Substituting Eq. (4.9) into Eq. (4.1) yields

e = L T xA)da=Sda-d=d, 2 a+da- S

:QEC(%—'?+V-VA)-dI+g[>CA-%[r(s+As,t)—r(s,t)] (4.12)

¢, (%—?)- di+ g (v-VA)-di+dA-[V(s+As)-V(sD)]

Substituting Eg. (4.11) into Eqg. (4.12), and then substituting Egs. (4.2) and (4.9) into the
resulting equation, it yields

d, =<35C(88—At)- di+d (V- VA)-di+ A -[V(s+AsD-V(sD)]

dt
~f.e-vay-d+d (v-va) d+fa EE ASAZ_V(SD] (a9

~§.(vxB)-di+ (V). di+ g (v-VA)- di+ A-[dl- (VV)]
—d v xAN-d-dab+ (v-VA)-di+ di- V(A V)]
— LV -VA+IVA- VOl di+ (V- VA)-di+ ) dl- [VA®- V)] (4.13)
1 va- v+ d-[VA©- V)]
~d.d-va-v)

¢ da-v)

0

Since, Eg. (4.13) is consistent with Eq. (4.1), we have successfully proved that the magnetic
flux isfrozen in MHD plasma.

4.3. Conservation of Circulation vs. Frozen-in Flux in MHD Plasma

The idea of frozen-in flux of MHD plasma is adopt from conservation of circulation in an
ideal fluid, where we define an ideal fluid is a non-viscous and isentropic fluid. (e.g., Landau
and Lifshitz (Fluid Mechanics, 2™ ed. 1989)

Momentum equation of anon-viscous fluid is
oV Vp

—+V-VW=——F1+g (4.149)
ot p
or

2
N _vx@xV)+v L =—YP_vo (4.14b)
ot 2 p g

Vorticity equation of a non-viscous fluid can be obtained from curl of the momentum
equation (4.14b)
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2
&V(;:V —V><[V><(V><V)]+V><[VV?]:—V><(@)—V><VCI)g
p
Since V xVf =0, the above equation can be simplified as
%_?_VX[ng]ﬂPin (4.15)

where Q=VxV. Eq. (4.15) iscalled vorticity equation.

If we consider an isentropic fluid, we have
pp " = constant

or
Vp Vp
- = ')/_

p p
Namely, vectors Vp and Vp are parallel to each other in an isentropic fluid. Thus,
VpxVp=0. The vorticity equation (4.15) becomes
%—?—VX[VXQ]=O (4.16)
Since Eq. (4.16) is similar to the combination of MHD Ohm'’s law and Faraday’s law, i.e.,

B
%_vX[vXBpo (4.17)

and since both where Q and B are divergent-free vectors, we can follow the similar
procedure as described in section 4.2 to show that circulation T'= (j)V -dl isconserved along

the path line of an ideal fluid element. Namely,

dr 5 gy g-d @-9ja
—_o_dtqﬂv dl dtH(VxV) da dtﬂg dal (4.18)

dt
Thisiscaled conservation of circulation in an ideal fluid.

Exercise4.2.
(@ Showthat VxVf=0
(b) Showthat V-(VxA)=0.

Answer of Exercise 4.2(a):
Consider the following integration

I vxvi=d () a :dSL%dI ¢ df =0

Thus, VxVf=0.

Answer of Exercise 4.2(b):

Consider the following integration

N,V (VxA) =4 (VxA)-da

Cut the closed surface  Sintotwo parts S and S, asshown in Figure 4.2. Let the
cutting edge form aclosed loop L. Let S=S(L)+S(-L). Thus, the above

integration can be written as
N)y V- (VxA) = b (VxA)-da

= I, 7xa)-das [ (VxA) da=dA-d-da-di=0
Thus, V-(VxA)=0.
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da
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Figure4.2. Sketches of how to cut the closed surface S into two parts §
and S, withcuttingedgeat loop L.



