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Lecture 4. Frozen-in Flux in Magnetohydrodynamic Plasma

The so-called ideal magnetohydrodynamic (MHD) plasma model is a model designed for
studying low-frequency long-wavelength plasma phenomena.  

Ohm’s Law in MHD limit (i.e., in low-frequency, long-wavelength limit) can be written as
E V B+ × = 0.  

Exercise 4.1.
(a) Show that electrostatic potential is constant along streamline and magnetic filed line

in steady-state MHD plasma.  (i.e., Constant potential surface is determined by a
set of streamlines and magnetic field lines in steady-state MHD plasma.)  

(b) What will happen if there is a potential difference along magnetic field line in MHD
plasma?  

(c) What will happen if there is a potential difference along streamline in MHD plasma?  

In this lecture, we shall use two different approaches to show that if a plasma fluid satisfies
E V B+ × = 0 then the magnetic flux is frozen in the plasma, i.e.,
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where d dt/  is a physical notation (but not a mathematical notation) of time derivatives along
the path of a fluid element.

The following three equations are the sufficient conditions of Eq.(4.1).
E V B+ × = 0 (MHD Ohm’s Law, or MHD approximation) (4.2)
∇ ⋅ =B 0 (No magnetic monopole) (4.3)

∇ × = −E
B∂

∂ t
(Faraday’s Law) (4.4)

4.1. Proof of Frozen-in Flux (Method 1)

By definition, variation of magnetic flux along the path line of fluid elements is
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Since ∇ ⋅ =B 0, it yields
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where the corresponding surface integrations are sketched in Figure 4.1.  
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Figure 4.1. Sketches of surface integration domain discussed in Eq. (4.6).

Substituting Eq. (4.6) into Eq. (4.5) yields
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Substituting Eq. (4.4) into Eq. (4.7) and then substituting Eq. (4.2) into the resulting equation,
it yields
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Since, Eq. (4.8) is consistent with Eq. (4.1), we have successfully proved that the magnetic
flux is frozen in MHD plasma.

4.2. Proof of Frozen-in Flux (Method 2)

Since ∇ ⋅ =B 0, we can let
B A= ∇ × (4.9)
Substituting Eq. (4.9) into Eq. (4.4) becomes

E
AEM

t
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∂
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Since EES = −∇Φ , the total electric field can be written as
E E E A= + = − − ∇EM ES t( / )∂ ∂ Φ
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or
∂ ∂A E/ t = − − ∇Φ (4.11)

Substituting Eq. (4.9) into Eq. (4.1) yields
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Substituting Eq. (4.11) into Eq. (4.12), and then substituting Eqs. (4.2) and (4.9) into the
resulting equation, it yields
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Since, Eq. (4.13) is consistent with Eq. (4.1), we have successfully proved that the magnetic
flux is frozen in MHD plasma.

4.3. Conservation of Circulation vs. Frozen-in Flux in MHD Plasma

The idea of frozen-in flux of MHD plasma is adopt from conservation of circulation in an
ideal fluid, where we define an ideal fluid is a non-viscous and isentropic fluid. (e.g., Landau
and Lifshitz (Fluid Mechanics, 2nd ed. 1989)

Momentum equation of a non-viscous fluid is
∂
∂ ρ
V

V V g
t

p+ ⋅ ∇ = − ∇ + (4.14a)

or
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2

2
Φ (4.14b)

Vorticity equation of a non-viscous fluid can be obtained from curl of the momentum
equation (4.14b)
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Since ∇ × ∇ =f 0, the above equation can be simplified as
∂
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ρ
ρ

ΩΩ ΩΩ
t

p− ∇ × × = ∇ × ∇
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where ΩΩ = ∇ × V.  Eq. (4.15) is called vorticity equation.

If we consider an isentropic fluid, we have
pρ γ− = constant
or
∇ = ∇p

p
γ ρ

ρ
Namely, vectors ∇p  and ∇ρ  are parallel to each other in an isentropic fluid.  Thus,
∇ × ∇ =ρ p 0 .  The vorticity equation (4.15) becomes
∂
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− ∇ × × =[ ]V 0 (4.16)

Since Eq. (4.16) is similar to the combination of MHD Ohm’s law and Faraday’s law, i.e.,
∂
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and since both where ΩΩ and B are divergent-free vectors, we can follow the similar
procedure as described in section 4.2 to show that circulation Γ ≡ ⋅∫ V ld  is conserved along

the path line of an ideal fluid element.  Namely,
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This is called conservation of circulation in an ideal fluid.

Exercise 4.2.
(a) Show that ∇ × ∇ =f 0
(b) Show that ∇ ⋅ ∇ × =( )A 0.

Answer of Exercise 4.2(a):
Consider the following integration
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Thus, ∇ × ∇ =f 0.
Answer of Exercise 4.2(b):
Consider the following integration
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Cut the closed surface S  into two parts S1 and S2 as shown in Figure 4.2.  Let the
cutting edge form a closed loop L .  Let S S L S L= + −1 2( ) ( ) .  Thus, the above
integration can be written as
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Thus, ∇ ⋅ ∇ × =( )A 0.
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Figure 4.2.  Sketches of how to cut the closed surface S  into two parts S1

and S2 with cutting edge at loop L .  


