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Lecture 7. Frozen-in Flux in Magnetohydrodynamic Plasma

Ideal magnetohydrodynamic (MHD) plasma model is applicable to study plasma phenomena

in low-frequency and long-wavelength limit.

Ohm’s Law in MHD limit (low-frequency, long-wavelength limit) can be written as

E+VXxB=0.

Exercise 7.1.

For steady state (d/dt =0) plasma, we have E=-V®. Show that electrostatic potential
is constant along streamline and magnetic filed line in steady state MHD plasma. (i.e.,
Constant potential surface is determined by a set of streamlines and magnetic field lines in

steady state MHD plasma.)

Using two different approaches, we are going to show in this lecture that if the plasma fluid
satisfies E4+V xXB =0 then the magnetic flux is frozen-in the plasma, i.e.,

dod,
dt

:% 1., B -da=0. (7.1)

where d/dt is a physical notation (but not a mathematical notation) of time derivatives

along the path of a fluid element.

The following three equations are the sufficient conditions of Eq.(7.1).

E+VxB=0 (MHD Ohm’s Law, or MHD approximation) (7.2)

V-B=0 (No magnetic monopole) (7.3)
B

VXE= —é— (Faraday’s Law) (7.4)
t

7.1. Proof of Frozen-in Flux (Method 1)

By definition, variation of magnetic flux along the path lines of fluid elements is

B(x,t+ At)-da— B(x,t)-da
Wl L(,)B-da=1g,g01j b e

From V-B=0 yields
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0= HJV ‘Bd’x = c-’ij;B(x,t +At)-da
=[], Br+An-da=[[ Blxt+An-dat+§Br.r+An-(dlx VAN
- HSMOB(“ +Af)-da— HS(I)B(x,t +An)-da+§dl-[VAI X B(x,1 + Ar)]

or

J LM,)B(XJ +Ar)-da= ”s(,)B(x’f +A)-da—§dl-[VAI X B(x,1 + Ar)]

Thus
- lim J.J‘S(HAQB(XJ +tAl)-da- J..[smB(x’t) da
dt a0 At
) [“.S(I)B(x,t +Ar)-da— qul [VAr X B(x.t + AD)]] - “‘SO)B(XJ) da
~lim =
) HS(,)[B(W +At)—B(x,1)]-da
=lim ~ —dl-(V xB)

=”S’;—]:~da—<_|5dl-(VxB)

= [[ -VxE)-da-d1-(VxB)
=dl-(-E)—dl-(V xB)
=al-(VxB)-§dl-(VxB)
=0

We have proved that

dd d
o= 5”50)““13 =0

7.2. Proof of Frozen-in Flux (Method 2)

Since V-B=0,wecanlet B=V xA. Thus Eq. (7.4) becomes

EEM :_8_A
ot
Since E® =-V®, we have E:—%—?—Vd),or %—?:—E—VCD

Therefore, variation of magnetic flux along path lines of fluid elements becomes
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d
j o (VxA) da=—¢ A-dl

c(S)

dt
= gﬁ‘(—+v -VA)-dl+§ A-—[r(s+ As,1)—1(s,0)]

95 ) d1+gS(V VA)- d1+<_[>A [V(s+As,1)— V(s,0)]

CPA . [V(s+As,t)—V(s,1)] (As)

= (-E-V®)-dl+§ (V-VA)-dl +

¢ ¢ ¢ As

= 9SC(V X B)-dl+§ﬁc(—V<I>)-dl+gsc(V : VA)-dl+g|§CA [d1-(VV)]

= C_'SC[V X (Vx A)]-dl - Cﬁcdd)+ (j)c(V-VA)-dH cﬁcdl-[V(A“ V)]

= 956{—V-VA+ [V(A-VO)]}-dl + qSC(V VA)-dl + (ﬁcdl-[V(A“ V)]
= [d1-V(A-V)I+§ dI-[VA- V)]

= dl-V(A-V)

= d(A-V)
=0
We have proved that

— ”S(t)(v A)- da——(f)c(s)A-dlzo

7.3. Conservation of Circulation vs. Frozen-in Flux in MHD Plasma
The idea of frozen-in flux of MHD plasma is adopt from conservation of circulation in an
ideal fluid, where we define an ideal fluid is a non-viscous and isentropic fluid. (e.g., Landau

and Lifshitz (Fluid Mechanics, 2™ ed. 1989)

Momentum equation of a non-viscous fluid is

Noivoov=—IP,, (7.52)
ot p
or
2
%—Y—VX(va)w_:_E_vcpg (7.5b)
p

Vorticity equation of a non-viscous fluid can be obtained from curl of the momentum equation

(7.5b)
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2
avajv—Vx[Vx(VxV)]+V><[VV7]=—VX(E)_VXV(Dg
p

Since V x Vf =0, the above equation can be simplified as

%_?_VX[VXQ]:VP_W (7.6)

where Q=V xV.

For an isentropic fluid,

Vw = E
p
Thus,
V x >p =VxVw=0
P
Thus, for an ideal fluid, the vorticity equation (7.6) becomes
%—Q—VX[VXQ]:O (7.7)
t

where V-Q=0. From equation (7.7) one can show the conservation of circulation along
the path line of an ideal fluid element

%:0:% V-dlz%”(VXV)-daz%”Q-da (7.8)

Equation (7.7) is similar to the combination of MHD Ohm’s law and Faraday’s law, i.e.,

B

a——Vx[VxB]:O (7.9)

ot

where V-B=0.

Likewise, equation (7.8) is similar to the result we obtained in the last two sections
)

d B:i” B-da=d A-d1=0 (7.10)
dt dtJ Ism dt Je®

7-4



