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Lecture 7. Frozen-in Flux in Magnetohydrodynamic Plasma 

 

Ideal magnetohydrodynamic (MHD) plasma model is applicable to study plasma phenomena 

in low-frequency and long-wavelength limit.   

 

Ohm’s Law in MHD limit (low-frequency, long-wavelength limit) can be written as 

E + V × B = 0 .   

 

Exercise 7.1. 

For steady state (∂ / ∂ t = 0 ) plasma, we have E = −∇Φ .  Show that electrostatic potential 

is constant along streamline and magnetic filed line in steady state MHD plasma.  (i.e., 

Constant potential surface is determined by a set of streamlines and magnetic field lines in 

steady state MHD plasma.) 

 

Using two different approaches, we are going to show in this lecture that if the plasma fluid 

satisfies E + V × B = 0  then the magnetic flux is frozen-in the plasma, i.e.,  

dΦB

dt
=
d
dt

B(x,t) ⋅da
S(t )∫∫ = 0 . (7.1) 

where 

� 

d /dt  is a physical notation (but not a mathematical notation) of time derivatives 

along the path of a fluid element. 

 

The following three equations are the sufficient conditions of Eq.(7.1). 

E + V × B = 0   (MHD Ohm’s Law, or MHD approximation)     (7.2) 

∇ ⋅B = 0    (No magnetic monopole)        (7.3) 

∇ × E = −
∂B
∂ t

  (Faraday’s Law)          (7.4) 

 

7.1. Proof of Frozen-in Flux (Method 1) 

 

By definition, variation of magnetic flux along the path lines of fluid elements is 

dΦB

dt
=
d
dt

B ⋅da
S(t )∫∫ =

Δ t→0
lim

B(x,t + Δt) ⋅da
S(t+Δ t )∫∫ − B(x,t) ⋅da

S(t )∫∫
Δt

 

From ∇ ⋅B = 0  yields 
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0 = ∇ ⋅Bd 3x∫∫∫ = B(x,t + Δt) ⋅da∫∫
= B(x,t + Δt) ⋅da

S(t+Δ t )∫∫ − B(x,t + Δt) ⋅da
S(t )∫∫ + B(x,t + Δt) ⋅ (dl × VΔt)∫

= B(x,t + Δt) ⋅da
S(t+Δ t )∫∫ − B(x,t + Δt) ⋅da

S(t )∫∫ + dl ⋅[VΔt × B(x,t + Δt)]∫
or

B(x,t + Δt) ⋅da
S(t+Δ t )∫∫ = B(x,t + Δt) ⋅da

S(t )∫∫ − dl ⋅[VΔt × B(x,t + Δt)]∫

 

Thus 

 

dΦB

dt
=

Δ t→0
lim

B(x,t + Δt) ⋅da
S(t+Δ t )∫∫ − B(x,t) ⋅da

S(t )∫∫
Δt

=
Δ t→0
lim

[ B(x,t + Δt) ⋅da
S(t )∫∫ − dl ⋅[VΔt × B(x,t + Δt)]∫ ]− B(x,t) ⋅da

S(t )∫∫
Δt

=
Δ t→0
lim

[B(x,t + Δt) − B(x,t)] ⋅da
S(t )∫∫

Δt
− dl ⋅ (V × B)∫

=
∂B
∂ t

⋅da
S∫∫ − dl ⋅ (V × B)∫

= (−∇ × E) ⋅da
S∫∫ − dl ⋅ (V × B)∫

= dl ⋅ (−E)∫ − dl ⋅ (V × B)∫
= dl ⋅ (V × B)∫ − dl ⋅ (V × B)∫
= 0

 

We have proved that 

dΦB

dt
=
d
dt

B ⋅da
S(t )∫∫ = 0  

 

7.2. Proof of Frozen-in Flux (Method 2) 

 

Since ∇ ⋅B = 0 , we can let B = ∇ × A . Thus Eq. (7.4) becomes 

EEM = −
∂A
∂ t

 

Since EES = −∇Φ , we have E = −
∂A
∂ t

− ∇Φ , or ∂A
∂ t

= −E − ∇Φ  

Therefore, variation of magnetic flux along path lines of fluid elements becomes 
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dΦB

dt
=
d
dt

(∇ × A) ⋅da
S(t )∫∫ =

d
dt

A ⋅dl
c(S )∫

= (∂A
∂ t

+ V ⋅∇A) ⋅dl
c∫ + A ⋅

d
dt
[r(s + Δs,t) − r(s,t)]

c∫

= (∂A
∂ t
) ⋅dl

c∫ + (V ⋅∇A) ⋅dl
c∫ + A ⋅[V(s + Δs,t) − V(s,t)]

c∫

= (−E − ∇Φ) ⋅dl
c∫ + (V ⋅∇A) ⋅dl

c∫ + A ⋅
[V(s + Δs,t) − V(s,t)]

Δs
(

c∫ Δs)

= (V × B) ⋅dl
c∫ + (−∇Φ) ⋅dl

c∫ + (V ⋅∇A) ⋅dl
c∫ + A ⋅[dl ⋅ (∇V)]

c∫
= [V × (∇ × A)] ⋅dl

c∫ − dΦ
c∫ + (V ⋅∇A) ⋅dl

c∫ + dl ⋅[∇(Ac ⋅V)]
c∫

= {−V ⋅∇A + [∇(A ⋅Vc )]} ⋅dl
c∫ + (V ⋅∇A) ⋅dl

c∫ + dl ⋅[∇(Ac ⋅V)]
c∫

= [dl ⋅∇(A ⋅Vc )]
c∫ + dl ⋅[∇(Ac ⋅V)]

c∫
= dl ⋅∇(A ⋅V)

c∫
= d(A ⋅V)

c∫
= 0

 

We have proved that 

 

dΦB

dt
=
d
dt

(∇ × A) ⋅da
S(t )∫∫ =

d
dt

A ⋅dl
c(S )∫ = 0  

 

7.3. Conservation of Circulation vs. Frozen-in Flux in MHD Plasma 

 

The idea of frozen-in flux of MHD plasma is adopt from conservation of circulation in an 

ideal fluid, where we define an ideal fluid is a non-viscous and isentropic fluid. (e.g., Landau 

and Lifshitz (Fluid Mechanics, 2nd ed. 1989) 

 

Momentum equation of a non-viscous fluid is 

∂V
∂ t

+ V ⋅∇V = −
∇p
ρ

+ g  (7.5a) 

or 

∂V
∂ t

− V × (∇ × V) +∇
V 2

2
= −

∇p
ρ

− ∇Φg  (7.5b) 

 

Vorticity equation of a non-viscous fluid can be obtained from curl of the momentum equation 

(7.5b) 
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∂∇ × V
∂ t

− ∇ × [V × (∇ × V)]+∇ × [∇V
2

2
] = −∇ × (∇p

ρ
) − ∇ × ∇Φg  

Since ∇ ×∇f = 0 , the above equation can be simplified as  

∂Ω
∂ t

− ∇ × [V × Ω] = ∇ρ × ∇p
ρ2

 (7.6) 

where 

� 

Ω = ∇ ×V . 

For an isentropic fluid,  

� 

∇w =
∇p
ρ

 

Thus,  

� 

∇ ×
∇p
ρ

= ∇ ×∇w = 0  

Thus, for an ideal fluid, the vorticity equation (7.6) becomes 

∂Ω
∂ t

− ∇ × [V × Ω] = 0  (7.7) 

where 

� 

∇ ⋅Ω = 0 .  From equation (7.7) one can show the conservation of circulation along 

the path line of an ideal fluid element 

 

dΓ
dt

= 0 = d
dt

V ⋅dl∫ =
d
dt

(∇ × V) ⋅da∫∫ =
d
dt

Ω ⋅da∫∫  (7.8) 

 

Equation (7.7) is similar to the combination of MHD Ohm’s law and Faraday’s law, i.e., 

∂B
∂ t

− ∇ × [V × B] = 0  (7.9) 

where 

� 

∇ ⋅B = 0 . 

Likewise, equation (7.8) is similar to the result we obtained in the last two sections  

 

dΦB

dt
=
d
dt

B ⋅da
S(t )∫∫ =

d
dt

A ⋅dl
c(S )∫ = 0  (7.10) 

 


