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Lecture 6. Linear Waves in Magnetohydrodynamic Plasma 
 

6.0. How to Linearize a Nonlinear Equation 

 

We shall use the mass continuity equation as an example to demonstrate how to linearize a 

nonlinear equation.  Let 

� 

A0  denotes a background state and 

� 

A1  denotes a small 

perturbation, where 

� 

O(A1) = O(ε)O(A0 ) .  Then, 

� 

A  can be written as  

� 

A = A0 + A1 + O(ε2 )O(A0 ) ≈ A0 + A1           (6.0.1) 

Substituting equation (6.0.1) into the mass continuity equation, it yields 

� 

[ ∂
∂ t

+ (V0 + V1) ⋅ ∇](ρ0 + ρ1) = −(ρ0 + ρ1)∇ ⋅ (V0 + V1)        (6.0.2) 

The equilibrium state of continuity equation is 

� 

(V0 ⋅ ∇)ρ0 = −ρ0∇ ⋅V0              (6.0.3) 

Subtracting equation (6.0.3) from equation (6.0.2) yields 

� 

( ∂
∂ t

+ V0 ⋅ ∇)ρ1 + V1 ⋅ ∇ρ0 + V1 ⋅ ∇ρ1 = −ρ0∇ ⋅V1 − ρ1∇ ⋅V0 − ρ1∇ ⋅V1    (6.0.4) 

where 

� 

V1 ⋅ ∇ρ1  and 

� 

ρ1∇⋅ V1  are of the order of 

� 

O(ε2) .  Ignoring these nonlinear 

second-order small terms, equation (6.0.4) is reduced to a linearized equation, 

� 

( ∂
∂ t

+ V0 ⋅ ∇)ρ1 + V1 ⋅ ∇ρ0 = −ρ0∇ ⋅V1 − ρ1∇ ⋅V0        (6.0.5) 

The linearized equation shown in equation (6.0.5) can be used to study linear waves in a 

non-uniform background medium with either density gradient or velocity shear.    

 

6.1. Linear Plane Waves in Uniform MHD Plasma  

 

Magnetohydrodynamic (MHD) plasma is a plasma model under long wavelength and low 

frequency limit, in which the time scale and spatial scale of the MHD plasma phenomena are 

much longer than the ions' time scale and spatial scale, respectively.  Lecture 4 shows that 

the MHD Ohm’s law can lead to frozen-in flux, which is an important characteristic of MHD 

plasma.  In addition to the characteristics of frozen-in conditions, MHD linear wave modes 

are also important characteristics of the MHD plasma.  Governing equations of MHD 

plasma with isotropic pressure and zero heat flux are listed in Column (1) of Table 6.1.  
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Table 6.1. Governing equations of MHD plasma with isotropic pressure and zero heat flux 

(1) MHD equations in (

� 

t, x ) domain (2) linearized MHD equations in (

� 

ω,k) domain 

Mass continuity equation 

� 

( ∂
∂ t

+ V ⋅ ∇)ρ = −ρ∇ ⋅V  

Mass continuity equation 

 

� 

(−iω) ˜ ρ 1 = −ρ0(ik) ⋅ ˜ V 1     (6.1) 

MHD momentum equation 

� 

ρ( ∂
∂ t

+ V ⋅ ∇)V = −∇p + J ×B 

MHD momentum equation 

 

� 

ρ0(−iω) ˜ V 1 = −(ik) ˜ p 1 + ˜ J 1 ×B0    (6.2) 

MHD energy equation 

� 

3
2
[( ∂
∂ t

+ V ⋅ ∇)ln(pρ−5 / 3)] = 0  

MHD energy equation 

� 

(−iω) ˜ p 1 = γ p0

ρ0

(−iω) ˜ ρ 1    (6.3) 

MHD charge continuity equation 

� 

∇ ⋅ J = 0  

MHD charge continuity equation 

� 

(ik) ⋅ ˜ J 1 = 0       (6.4) 

MHD Ohm’s law 

� 

E + V ×B = 0  

MHD Ohm’s law 

� 

˜ E 1 + ˜ V 1 ×B0 = 0     (6.5) 

Maxwell’s equations: 

� 

∇ ⋅E = 0  

� 

∇ ⋅B = 0  

� 

∇ ×E = −∂B
∂ t

 

� 

∇ × B = µ0J 

Maxwell’s equations: 

� 

(ik) ⋅ ˜ E 1 = 0      (6.6) 

� 

(ik) ⋅ ˜ B 1 = 0      (6.7) 

� 

(ik) × ˜ E 1 = iω ˜ B 1     (6.8) 

� 

(ik) × ˜ B 1 = µ0
˜ J 1     (6.9) 

 

For uniform background plasma, we can choose a moving frame such that 

� 

V0 = 0 .  

Substituting 

� 

V0 = 0  into Ohm’s law, it yields 

� 

E0 = 0 .  Far from the source region, 

perturbations can be assumed in plane-wave format.  A perturbation 

� 

A1(x, t)  can be written 

as 

� 

A1(x,t) = A 1(k,ω)cos(k ⋅ x −ω t + φA ) = Re{ ˜ A 1(k,ω)exp[i(k ⋅ x −ω t)]} 

where 

� 

˜ A 1(k,ω) = A 1(k,ω)eiφA  is a complex number.  The wave amplitude 

� 

A 1(k,ω) satisfies 

� 

O(A 1) = O(ε)O(A0) , where 

� 

A0  denotes a background variable.  Following the procedures 

described in equations (6.0.1)~(6.0.5), a set of linearized MHD equations in (

� 

ω,k ) domain 

are obtained and are listed in Column (2) of Table 6.1. 
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Our goal is to reduce the system equations listed in Table 6.1 Column (2) into a set of 

equations for plasma flow velocity 

� 

˜ V 1.  We shall focus on the momentum equation (6.2).  

In order to eliminate 

� 

˜ p 1  in Eq. (6.2), we substitute Eq. (6.1) into Eq. (6.3) to eliminate 

� 

˜ ρ 1, 

then substitute the resulting equation into Eq. (6.2) to eliminate 

� 

˜ p 1 .  Likewise, to eliminate 

� 

˜ J 1 in Eq. (6.2), we can substitute Eq. (6.5) into Eq. (6.8) to eliminate 

� 

˜ E 1, then substitute the 

resulting equation into Eq. (6.9) to eliminate 

� 

˜ B 1, and then substitute the resulting equation 

into Eq. (6.2) to eliminate 

� 

˜ J 1.   

 

 

 

Substituting Eq. (6.1) into Eq. (6.3) yields  

� 

˜ p 1 = γ p0

ρ0

˜ ρ 1 = CS0
2 ˜ ρ 1 = CS 0

2 ρ0k ⋅ ˜ V 1
ω

           (6.3') 

Substituting Eq. (6.5) into Eq. (6.8) to eliminate 

� 

˜ E 1, then substituting the resulting equation 

into Eq. (6.9) to eliminate 

� 

˜ B 1, it yields 

 

J1 =
ik × B1
µ0

=
ik × k ×

E1
ω

µ0
=
ik × k × (−

V1 × B0 )
ω

µ0
=
ik × [k × (B0 × V1)]

µ0ω
   (6.9') 

Substituting Eqs. (6.3') and (6.9') into Eq. (6.2) yields 

 

ρ0 (−iω ) V1 = −ikCS0
2 ρ0k ⋅ V1

ω
+
ik × [k × (B0 × V1)]

µ0ω
× B0       (6.2') 

Multiplying Eq. (6.2') by iω / ρ0k
2  yields 

 

ω 2

k2
V1 = CS0

2 k̂k̂ ⋅ V1 + CA0
2 B̂0 × {k̂ × [k̂ × (B̂0 × V1)}   

where 

� 

CA 0 ≡ B0 / µ0ρ0  is called Alfvén speed, and 

� 

CS0 ≡ γ p0 /ρ0  is called sound speed. 

 

As a result, we can obtain a set of equations for flow velocity 

� 

˜ V 1, which can be written as 

� 

D ⋅ ˜ V 1 = 0                 (6.10) 

where 

� 

D = [ω
2

k 2 −CA 0
2 ( ˆ B 0 ⋅ ˆ k )2]1− (CA 0

2 + CS0
2 ) ˆ k ̂  k + CA 0

2 ( ˆ B 0 ⋅ ˆ k )( ˆ B 0 ˆ k + ˆ k ̂  B 0)     (6.11) 
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For convenience, we can choose a coordinate system such that background magnetic field is 

along the 

� 

ˆ z -axis, and wave number 

� 

k  lies on 

� 

x -

� 

z  plane.  Namely,  

� 

B0 = ˆ z B0                (6.12) 

and 

� 

k = k( ˆ z cosθ + ˆ x sinθ)              (6.13) 

where 

� 

θ  is the angle between 

� 

k  and 

� 

B0.  Substituting Eqs. (6.12) and (6.13) into Eqs. 

(6.10) and (6.11) yields 

� 

(ω 2 /k 2) −α 0 −δ
0 (ω 2 /k 2) −CA 0

2 cos2θ 0
−δ 0 (ω 2 /k 2) −β

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

V1x
V1y
V1z

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

= 0       (6.14) 

where 

� 

α = CA 0
2 cos2θ + (CA 0

2 + CS0
2 )sin2θ = CA 0

2 + CS0
2 sin2θ        (6.15) 

� 

β = CA 0
2 cos2θ + (CA 0

2 + CS0
2 )cos2θ − 2CA 0

2 cos2θ = CS0
2 cos2θ       (6.16) 

� 

δ = CS0
2 cosθ sinθ               (6.17) 

 

Note that solutions of 

� 

ω2 / k2  for different wave modes can be considered as eigen values of 

the following matrix 

� 

α 0 δ
0 CA 0

2 cos2θ 0
δ 0 β

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
 

Characteristics of different wave modes can be obtained from the corresponding eigen 

vectors.  

 

Exercise 6.1. 

Review eigen values and eigen vectors of a symmetric matrix.  Determine eigen values 

� 

λ1, 

� 

λ2, 

� 

λ3 , and the corresponding normalized eigen vectors 

� 

ˆ e 1 , 

� 

ˆ e 2 , 

� 

ˆ e 3 , of the following 

symmetric matrix  

� 

M =
1 1 0
1 1 1
0 1 1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
 

Show that these eigen vectors of the symmetric matrix form an orthonormal basis and after 

coordinate transformation, the representation of matrix 

� 

M  in this new basis 

� 

′ B = {ˆ e 1, ˆ e 2, ˆ e 3}  becomes 
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� 

M =
λ1 0 0
0 λ2 0
0 0 λ3

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

′ B 

 

 

6.2. Linear Wave Modes in the MHD Plasma 

 

Number of linearized equations with time derivative term can lead to the same number of 

linear wave modes.  There are seven equations in Table 6.1 that consist of a time derivative 

term.  It will be shown in this section that, for 

� 

θ ≠ 0 and 

� 

θ ≠ π /2, seven linear wave 

modes can be found in MHD plasma.  Three of them are forward propagating waves.  

Based on their wave speeds, these three wave modes are called fast-mode wave, 

intermediate-mode wave, and slow-mode wave.  The intermediate mode wave is also called 

Alfvén-mode wave or share-Alfvén wave.  The other four wave modes are backward 

propagating fast-mode wave, intermediate-mode wave, slow-mode wave, and 

non-propagating entropy-mode wave.  The fast mode, Alfvén mode, and slow mode are 

eigen modes of Eq. (6.14).  The entropy mode is an additional wave mode, which can be 

obtained from equation of 

� 

ρ1 (i.e., continuity equation). 

 

6.2.1. Entropy Mode 

 

Entropy mode in MHD plasma is characterized by 

� 

ρ1 ≠ 0, but 

� 

V1x =V1y =V1z = 0  and 

� 

ω = 0.  

For 

� 

ω = 0 , the phase speed also vanishes.  Thus, entropy mode is frozen in the plasma flow.   

 

In general, if 

� 

V1x =V1y =V1z = 0 , but 

� 

ρ1 ≠ 0 and/or 

� 

B1 ≠ 0, then 

� 

ω  must be zero (

� 

ω = 0), 

and 

� 

−(ik) ˜ p 1 + ˜ J 1 ×B0 = 0 . 

 

Proof: 

For 

� 

V1x =V1y =V1z = 0 , Eq. (6.10) or (6.14) is automatically fulfilled.   

Substituting 

� 

V1 = 0  into Eq. (6.5) yields 

� 

E1 = 0 .   

Substituting 

� 

V1 = 0  into Eq. (6.1) yields 

� 

ω ˜ ρ 1 = 0 .   

Substituting 

� 

E1 = 0  into Eq. (6.8) yields 

� 

ω ˜ B 1 = 0 .   

Thus, if 

� 

ρ1 ≠ 0  and/or 

� 

B1 ≠ 0 , then we must have 

� 

ω = 0.  
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Substituting 

� 

V1 = 0  into Eq. (6.2) yields  

� 

−(ik) ˜ p 1 + ˜ J 1 ×B0 = 0              (6.2a) 

Substituting Eq. (6.9) into Eq. (6.2a) yields 

� 

−k ˜ p 1 −
k( ˜ B 1 ⋅B0)

µ0

+ (k ⋅B0) ˜ B 1
µ0

= 0            (6.2b) 

Eq. (6.7) implies 

� 

B1⊥k , thus Eq. (6.2b) can be decomposed into two components.  One of 

them is in 

� 

k  direction.  The other is in 

� 

B1 direction.  That is 

� 

−k( ˜ p 1 +
˜ B 1 ⋅B0

µ0

) = 0              (6.2c) 

and 

� 

(k ⋅B0) ˜ B 1 = 0                (6.2d) 

Eq. (6.2d) implies if 

� 

B1 ≠ 0  then 

� 

k ⋅B0 = 0 .  Likewise, if 

� 

k ⋅B0 ≠ 0 then 

� 

B1 = 0 .   

Thus, solutions of 

� 

ω = 0 can be classified into the following types: 

 

If 

� 

B1 ≠ 0 , 

� 

ρ1 = p1 = 0 , and 

� 

k ⋅B0 = 0 , then wave mode with 

� 

ω = 0  can be considered as 

perpendicular-propagated Alfvén-mode wave .  Eq. (6.2c) yields 

� 

B1 ⋅B0 = 0 in this case.  

 

If 

� 

B1 ≠ 0 , 

� 

p1 ≠ 0 , and 

� 

k ⋅B0 = 0 , then wave mode with 

� 

ω = 0  can be considered as 

perpendicular-propagated slow-mode wave.  Eq. (6.2c) yields 

� 

B1 ⋅B0 ≠ 0  in this case. 

 

If 

� 

ω = 0 , 

� 

ρ1 ≠ 0  and 

� 

k ⋅B0 ≠ 0 , then Eq. (6.2d) and (6.2c) yield 

� 

p1 = 0  and 

� 

B1 = 0 .   

This wave mode is called entropy mode.  Note that for 

� 

ω = 0, Eq. (6.3) is automatically 

fulfilled. 

 

It can be shown that solutions of nonlinear MHD equilibrium states consist of Contact 

Discontinuity (CD), Tangential Discontinuity (TD), Rotational Discontinuity (RD), and 

Shock Waves.  (e.g., Kantrowitz and Petschek, 1966; and Chao, 1970. Or see Chapter 2 in 

my lecture notes of Nonlinear Space Plasma Physics.) 

 

It can be shown that Tangential Discontinuity (TD) can be considered as a nonlinear version 

of perpendicularly propagated Alfvén-mode wave or slow-mode wave.  Contact 

Discontinuity (CD) can be considered as a nonlinear version of entropy-mode wave in MHD 

plasma.   
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6.2.2. Alfvén Mode (or Intermediate Mode)  

 

Alfvén mode in MHD plasma is characterized by 

� 

V1x =V1z = 0  but 

� 

V1y ≠ 0 .  For 

� 

V1x =V1z = 0  but 

� 

V1y ≠ 0, Eq. (6.14) yields 

� 

ω 2

k 2
= CA 0

2 cos2θ               (6.18) 

Eq. (6.18) is the wave dispersion relation of Alfvén-mode wave.  Since the phase speed of 

Alfvén mode is in between fast-mode and slow-mode wave speed, the Alfvén mode is also 

called intermediate mode.  It can be shown that Rotational Discontinuity (RD) can be 

considered as a nonlinear version of Alfvén-mode wave in MHD plasma.   

 

Characteristics of Alfvén-mode wave: 

 

From Alfvén-mode wave dispersion relation 

� 

ω = ±kCA 0 cosθ , we can determine group 

velocity of Alfvén mode to be 

� 

vg = dω
dk

= ˆ x ∂ω
∂kx

+ ˆ z ∂ω
∂kz

= ± ˆ z CA 0 = ± ˆ B 0CA 0  

 

Exercise 6.2. 

(1) Show that for Alfvén wave 

� 

ρ1 = 0 , 

� 

p1 = 0 , and 

� 

B1 = 0 .  Show that 

� 

B1 can be 

determined from 

� 

B1 = B1 ⋅ ˆ B 0.  

(2) Determine perturbation directions of 

� 

V1, 

� 

E1, 

� 

B1, and 

� 

J1 for Alfvén-mode wave. 

(3) Determine relationship between 

� 

B1  and 

� 

V1  in Alfvén-mode wave.  Show that 

variations of 

� 

B1  and 

� 

V1  are in phase if 

� 

π /2 < θ < π , but out-off phase if 

� 

0 <θ < π /2. 

 

6.2.3. Fast Mode and Slow Mode  

 

For 

� 

V1y = 0  but 

� 

V1x
V1z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≠

0
0
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟   

Eq. (6.14) yields 
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� 

det
(ω 2 /k 2) −α −δ

−δ (ω 2 /k 2) −β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = ω 2

k 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− ω
2

k 2
(α + β) + αβ −δ 2 = 0  

where 

� 

α , 

� 

β , and 

� 

δ  are given in Eqs. (6.15)~(6.17), which yields 

� 

α + β = CA 0
2 + CS0

2 sin2θ + CS0
2 cos2θ = CA 0

2 + CS0
2  

and 

� 

αβ −δ 2 = (CA 0
2 + CS0

2 sin2θ)CS0
2 cos2θ −CS0

4 cos2θ sin2θ = CA 0
2 CS0

2 cos2θ  

Thus, we have 

� 

ω 2

k 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− ω
2

k 2
(CA 0

2 + CS0
2 ) + CA 0

2 CS0
2 cos2θ = 0         (6.20) 

Eq. (6.20) has two roots of 

� 

ω2 / k2 .  They are the fast-mode (+) and slow-mode (–) 

dispersion relation  

� 

ω 2

k 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Fast
Slow

= (vph
2 )Fast

Slow
= 1
2
{(CA 0

2 + CS0
2 ) ± (CA 0

2 + CS0
2 )2 − 4CA 0

2 CS0
2 cos2θ}   (6.21) 

 

Characteristics of Fast-mode and Slow-mode waves: 

 

From Fast-mode and Slow-mode wave dispersion relation, we can determine group velocity 

of these two wave modes as 

� 

(vg )Fast
Slow

= ω
k

( ˆ k ∂ω
∂k

+ ˆ θ 1
k
∂ω
∂θ

) = ˆ k (vph )Fast
Slow

± ˆ θ 1
(vph )Fast

Slow

CA 0
2 CS 0

2 cosθ sinθ
(CA 0

2 + CS 0
2 )2 − 4CA 0

2 CS 0
2 cos2θ

 (6.22) 

where 

� 

(v ph)Fast
Slow

 is given in Eq. (6.21). 

Proof of Eq. (6.22): 

By definition, group velocity is 

� 

vg = dω
dk

= ˆ k ∂ω
∂k

+ ˆ θ 1
k
∂ω
∂θ

 

where 

� 

2ω ∂ω
∂k

= 2kω
2

k 2
 

and 
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� 

2ω ∂ω
∂θ

= k 2 ∂
∂θ
[1
2
{(CA 0

2 + CS0
2 ) ± (CA 0

2 + CS0
2 )2 − 4CA 0

2 CS0
2 cos2θ}]

= k 2(1
2
)(± 1
2
) 4 ⋅ 2CA 0

2 CS0
2 cosθ sinθ

(CA 0
2 + CS0

2 )2 − 4CA 0
2 CS0

2 cos2θ

 

Thus, we have 

� 

vphvg = ω
k

( ˆ k ∂ω
∂k

+ ˆ θ 1
k
∂ω
∂θ

) = ˆ k ω
2

k 2 ± ˆ θ CA 0
2 CS 0

2 cosθ sinθ
(CA 0

2 + CS 0
2 )2 − 4CA 0

2 CS 0
2 cos2θ

= ˆ k [1
2
{(CA 0

2 + CS0
2 ) ± (CA 0

2 + CS0
2 )2 − 4CA 0

2 CS0
2 cos2θ}] ± ˆ θ CA 0

2 CS0
2 cosθ sinθ

(CA 0
2 + CS0

2 )2 − 4CA 0
2 CS0

2 cos2θ

 

or 

� 

(vg )Fast
Slow

= ω
k

( ˆ k ∂ω
∂k

+ ˆ θ 1
k
∂ω
∂θ

) = ˆ k (vph )Fast
Slow

± ˆ θ 1
(vph )Fast

Slow

CA 0
2 CS 0

2 cosθ sinθ
(CA 0

2 + CS 0
2 )2 − 4CA 0

2 CS 0
2 cos2θ

 

 

Exercise 6.3. 

(1) Determine phase relationship of 

� 

ρ1 and 

� 

B1, for fast-mode and slow-mode waves.   

(2) Determine perturbation directions of 

� 

V1 , 

� 

E1 , 

� 

B1 , and 

� 

J1  for fast-mode and 

slow-mode waves.   

(3) Show that 

� 

V1Fast ⋅ V1Slow = 0 . 

 

 

Proof of Exercise 6.3(3) 

� 

V1Fast ⋅ V1Slow = 0 

 

Eq. (6.14) yields  

� 

(V1x )Fast[(ω
2 /k 2)Fast −α]− (V1z )Fastδ = 0 

and  

� 

(V1x )Slow[(ω
2 /k 2)Slow −α]− (V1z)Slowδ = 0 

Substituting the above two equations into 

� 

V1Fast ⋅ V1Slow , it yields 
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� 

V1Fast ⋅V1Slow = (V1x )Fast (V1x )Slow + (V1z)Fast (V1z )Slow
= (V1x )Fast (V1x )Slow + {(V1x )Fast[(ω

2 /k 2)Fast −α]/δ}{(V1x )Slow[(ω
2 /k 2)Slow −α]/δ}

= (V1x )Fast (V1x )Slow{1+ [(ω 2 /k 2)Fast −α][(ω
2 /k 2)Slow −α]/δ

2}
= (V1x )Fast (V1x )Slow{δ

2 + (ω 2 /k 2)Fast (ω
2 /k 2)Slow −α[(ω

2 /k 2)Fast + (ω 2 /k 2)Slow ]+ α 2} /δ 2

= (V1x )Fast (V1x )Slow{δ
2 + α 2 + 1

4
[b2 − (b2 − 4c)]−αb}/δ 2

= (V1x )Fast (V1x )Slow{δ
2 + α 2 + c −αb}/δ 2

 

where 

� 

b = (α + β )
c =αβ −δ 2

 

Thus 

� 

V1Fast ⋅V1Slow = (V1x )Fast (V1x )Slow{δ
2 + α 2 + (αβ −δ 2) −α(α + β)}/δ 2 = 0 

 

Proof of (1)   

(6.1): 
 
(−iω ) ρ1 = −ρ0 (ik) ⋅ V1  

(6.3') : 
 

p1 =
γ p0
ρ0
ρ1 = CS0

2 ρ1  

(6.2) : 

� 

ρ0(−iω) ˜ V 1 = −(ik) ˜ p 1 + ˜ J 1 ×B0  

(6.9) : 
 
(ik) × B1 = µ0 J1  

Substituting (6.9) into (6.2), it yields  

 
ρ0 (−iω ) V1 = −(ik) p1 + (ik × B1) × B0 / µ0         (6.2') 

Substituting (6.3') into 

� 

k ⋅(6.2') to eliminate 
 
J1 , then substituting (6.1) into the resulting 

equation to eliminate 
 
V1  and substituting (6.3') into the resulting equation to eliminate 

 
p1 , it yields 

 
ρ0 (−iω )k ⋅ V1 = −k ⋅ (ik) p1 + k ⋅[(ik × B1) × B0 ] / µ0  

 

⇒ (−iω 2 ) ρ1 = −ik2CS0
2 ρ1 + i

k ⋅B0k ⋅ B1
µ0

− ik2
B0 ⋅ B1
µ0

       (6.2") 

where 

� 

k ⋅ ˜ B 1 = 0 .  It can be shown that B − B0 = B1 = B1 ⋅ (B0 / B0 )  

Thus, the above equation (6.2") can be rewritten as 

 

(ω 2 )
ρ1
ρ0

= k2CS0
2 ρ1
ρ0

+ k2
B0
2

ρ0µ0

B1
B0

= k2CS0
2 ρ1
ρ0

+ k2CA0
2
B1
B0

 

 



Space Physics (I) [AP-3044] Lecture 6  by Ling-Hsiao Lyu  2012 January 
 

 

p. 6-11 

 

⇒ (ω
2

k2
− CS0

2 )
ρ1
ρ0

= CA0
2
B1
B0

            (6.2''') 

Thus, for 

� 

ω 2 /k 2 > CS0
2 , variations of 

� 

ρ1 and 

� 

B1 are in phase. 

For 

� 

ω 2 /k 2 < CS0
2 , variations of 

� 

ρ1 and 

� 

B1 are out-off phase. 

It can be shown that, for fast-mode wave, we have 

� 

(ω 2 /k 2)Fast ≥ CS0
2 .  Thus, for 

fast-mode wave, variations of 

� 

ρ1 and 

� 

B1 are in phase.  For slow-mode wave, we have 

� 

(ω 2 /k 2)Slow ≤ CS0
2 .   Thus, for slow-mode wave, variations of 

� 

ρ1 and 

� 

B1 are out-off 

phase.  

 

Note that (6.3') yields variations of 

� 

ρ1 and 

� 

p1 are in phase.  Equation (6.2''') can be 

rewritten as 

 

(ω
2

k2
− CS0

2 )
p1

CS0
2 ρ0

= CA0
2
B1
B0

 

Thus, for 

� 

ω 2 /k 2 > CS0
2 , variations of 

� 

p1 and 

� 

B1 are in phase. 

For 

� 

ω 2 /k 2 < CS0
2 , variations of 

� 

p1 and 

� 

B1 are out-off phase.  

 

 

6.2.4. Friedrichs Diagrams of the Phase Velocity and Group Velocity of the MHD 

Waves 

 

Exercise 6.4. 

(1) Ignoring the entropy mode, plot the phase velocities of the three MHD wave modes: 

fast-, Alfvén-, and slow-modes, on the Friedrichs diagram, where the polar 

coordinate 

� 

(r,θ) = (ω /k,θk ,B0 ) .  

(2) Ignoring the entropy mode, plot the group velocities of the three MHD wave modes: 

fast-, Alfvén-, and slow-modes, on the Friedrichs diagram, where the polar 

coordinate 

� 

(r,θ) = (vg, θv gB0 ) .   

 

Students are encouraged to read the classical paper written by Kantrowitz and Petschek (1966) 

for detail discussion on the MHD wave modes.  The application of the group-velocity 

Friedrichs diagram on wave expansion near the source region can be found in the two papers 

by Lai and Lyu (2006, 2008). 
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