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Lecture 3. Periodic Motions and Drift Motions in Plasma 

 

3.1. Periodic Motions and Drift Motions of a Charged Particle 

 

The “action” of a periodic motion (
 
J = pdq∫ ) is conserved if the parameters that affect the 

periodic motion are nearly steady and uniform (Goldstein, 1980).  Three periodic motions 

may be found in magnetized plasma.  They are (1) periodic gyro motion around the 

magnetic field, (2) bounce motion in a magnetic mirror machine, and (3) periodic drift 

motion around a magnetic mirror machine, where the magnetic mirror machine is 

characterized by non-uniform magnetic field strength along the magnetic field line. 

 

Exercise 3.1. 

Consider a charge particle moving in a nearly steady and nearly uniform magnetic field.  

Show that if variation of magnetic field δB(x,t)  is small compare with the background 

magnetic field 

� 

B  in one gyro period and in one gyro radius (i.e., δB << B ), then the 

particle’s magnetic momentum is conserved.  That is 

µ =

1
2
mv⊥

2

B
≈ constant  

 

Exercise 3.2. 

Determine loss-cone size α e _ loss _ cone  on the magnetic equatorial plane of a dipole 

magnetic field line with different L value (L=2, 3, 4, 5, 6, 7, 8, 9, or 10).   

 

Exercise 3.3. 

Problem 2.1 on page 55 in the textbook. 

 

Before introducing the third type of periodic motion (i.e., a periodic drift motion), we need 

first introduce different types of drift motion in a magnetized plasma. 

 

Considering a charged particle moving in a nearly steady and nearly uniform magnetic field.   

If this particle’s magnetic momentum is conserved, its perpendicular velocity 

� 

v⊥  can be 

decomposed into two components.  One is a high frequency gyro velocity 

� 

vgyro .  The other 
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is a low frequency or nearly time independent drift motion 

� 

vdrift .  Namely,  

v⊥ = vgyro + vdrift  

In general, a low frequency equation of motion can be obtained by averaging the original 

equation of motion over a gyro period.  We can obtain the guiding center drift velocity 

� 

vdrift  

from the low frequency equation of motion.  

 

3.1.1. 

� 

E × B Drift 

 

Considering a charge particle moving in a system with a uniform magnetic field 

� 

B  and a 

uniform electric field 

� 

E, which is in the direction perpendicular to the local magnetic field 

� 

B .  If this particle has no velocity component parallel to the local magnetic field and 

magnetic momentum of this particle is conserved, then we can decompose velocity of this 

particle into  

v = vgyro + vdrift  

where 

� 

vgyro  is the high frequency gyro motion velocity and 

� 

vdrift  is a time independent 

guiding center drift velocity.  Equation of motion of this charge particle is  

m
dv
dt

= q(E + v × B)  (3.1) 

Averaging Eq. (3.1) over one gyro period (

� 

τ = 2π /Ω c , where 

� 

Ωc =| q |B /m ), we can obtain 

equation for low frequency guiding-center motion, 

E + vdrift × B = 0  (3.2) 

Solution of 

� 

vdrift  in Eq. (3.2) is the 

� 

E × B drift velocity 

vdrift =
E × B
B2

 (3.3) 

Note that if both ions and electrons follow E × B  drift, then there will be no low frequency 

electric current generated by ions’ and electrons’ E × B -drift.  In the Earth ionosphere 

E-region, electrons follow 

� 

E × B  drift, but ions do not.  As a result, electrons’ 

� 

E × B  drift 

can lead to Hall current in the E-region ionosphere.  Hall current is in 

� 

−E × B  direction.  

Large-scale plasma flow in magnetosphere and interplanetary space are mainly governed by 

� 

E × B  drift, whereas, electric field information is mainly carried by Alfven wave along the 

magnetic field line.  Thus, Alfven wave and 

� 

E × B drift together play important roles on 

determining large-scale plasma flow in space. 
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Exercise 3.4. 

Let us consider an electron moving in a system with E = ŷ60 mV/m , B = ẑ 200 nT .  

Please determine gyro speed and sketch trajectory of this electron if at 

� 

t = 0 , electron’s 

initial velocity is  

(1) v = + x̂800 km/s  (describe the physical meaning of this trajectory.) 

(2) v = + x̂600 km/s  

(3) v = + x̂ 400 km/s  

(4) v = + x̂ 300 km/s  

(5) v = + x̂200 km/s  

 

Exercise 3.5. 

Explain formation of comet’s plasma tail, Earth’s plasmasphere, and Earth’s plasmasheet 

(in magnetotail) based on 

� 

E × B  drift of plasmas.  Discuss formation of cross-field 

electric field (

� 

E⊥B ) in these three cases. 

 

3.1.2. Gravitational Drift 

 

Considering a charge particle moving in a system with uniform magnetic field 

� 

B  and 

uniform gravitational field 

� 

g , which is in the direction perpendicular to the local magnetic 

field 

� 

B.  If this particle has no velocity component parallel to the local magnetic field and 

magnetic momentum of this particle is conserved, then we can decompose velocity of this 

particle into  

v = vgyro + vdrift  

where 

� 

vgyro  is the high frequency gyro motion velocity and 

� 

vdrift  is a time independent 

guiding center drift velocity.  Equation of motion of this charge particle is  

m
dv
dt

= mg + qv × B  (3.4) 

Averaging Eq. (3.4) over one gyro period (τ = 2π /Ωc , where Ωc = | q | B / m ), we can 

obtain equation for low frequency guiding-center motion, 

mg + qvdrift × B = 0  (3.5) 

Solution of 

� 

vdrift  in Eq. (3.5) is the gravitational drift velocity  
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vdrift =
mg × B
qB2

 (3.6) 

Drift speed of gravitational drift increases with increasing particle’s mass.  Gravitational 

drift provides an important electric current source in low latitude ionosphere and in solar 

convection zone.   

 

Exercise 3.6. 

Show that gravitational drift in low-latitude ionosphere is unstable to a surface wave at 

bottom-side of the E-region ionosphere.  This is called gravitational Raleigh-Taylor (GRT) 

instability.  The GRT instability can result in low-density plasma cavities (i.e., spread-E 

and sporadic-F irregularities) in low-latitude ionosphere.  

 

3.1.3. Curvature Drift 

 

Consider a charge particle with constant magnetic moment and non-zero velocity component 

parallel to the local magnetic field.  If curvature of the magnetic field line is non-zero, then 

the particle’s field-aligned moving frame will become a non-inertial frame.  Let us consider 

a time scale in which the particle’s parallel speed 

� 

v||  is nearly constant.  Equation of motion 

in this non-inertial moving frame can be approximately written as   

m
dv
dt

=
R̂Bmv||

2

RB

+ qv × B  (3.7) 

We can decompose velocity of this particle into  

� 

v = vgyro + vdrift  

where 

� 

vgyro  is the high frequency gyro motion velocity and 

� 

vdrift  is a low frequency (or 

nearly time independent) drift velocity.  Averaging Eq. (3.7) over one gyro period 

(

� 

τ = 2π /Ω c , where 

� 

Ωc =| q |B /m ), we can obtain equation for low frequency guiding-center 

motion in the 

� 

v||  non-inertial moving frame  

R̂Bmv||
2

RB

+ qvdrift × B = 0  (3.8) 

Solution of 

� 

vdrift  in Eq. (3.8) is the curvature drift velocity, which can be written as  

vdrift =
mv||

2

qB2
( R̂B

RB

× B)  (3.9) 
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It is shown in Appendix A that curvature drift velocity in Eq. (3.9) can be rewritten as 

vdrift =
mv||

2

qB2
[(∇ × B)⊥ −

∇⊥B
B

× B]  (3.10) 

Drift speed of the curvature drift increases with increasing 

� 

mv||
2  (which is proportion to 

particle’s kinetic energy in the direction parallel to local magnetic field).  The curvature 

drifts carried by energetic ions during magnetic storm and substorm periods can enhance 

partial ring current in the pre-midnight and midnight region. 

 

3.1.4. Grad B Drift 

 

Considering a charge particle moving in a system with non-uniform magnetic field 

� 

B(r) .  If 

the non-uniformity of the magnetic field is small enough such that we can use the first two 

terms in Taylor expansion to estimate magnetic field based on magnetic field information at 

guiding center of the charge particle. Namely,  

B(r) = B(rg.c. ) + (r − rg.c. ) ⋅ (∇B) rg .c . + ⋅ ⋅ ⋅ ⋅  (3.11) 

where r − rg.c. = rgyro . 

If this particle has no velocity component parallel to the local magnetic field and magnetic 

momentum of this particle is conserved then we can decompose velocity of this particle into  

� 

v = vgyro + vdrift  

where 

� 

vgyro  is the high frequency gyro motion velocity and 

� 

vdrift  is a time independent 

guiding center drift velocity.  Equation of motion of this charge particle can be 

approximately written as 

m
dv
dt

= qv × B ≈ q(vgyro + vdrift ) × [B(rg.c. ) + rgyro ⋅∇B]  (3.12) 

Averaging Eq. (3.12) over one gyro period (τ = 2π /Ωc , where Ωc = | q | B / m ), we can 

obtain equation for low frequency guiding-center motion  

vdrift × B(rg.c. ) + vgyro × (rgyro ⋅∇B) = 0  (3.13) 

where the notation 

� 

f  denotes time average value of 

� 

f .  It is shown in Appendix B that 

the average value in Eq. (3.13) can be rewritten as  

vgyro × rgyro ⋅∇B =
mvgyro

2

2qB
(−∇⊥B)  

Thus, Eq. (3.13) becomes 
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vdrift × B(rg.c. ) +
mvgyro

2

2qB
(−∇⊥B) = 0  (3.14) 

Solution of 

� 

vdrift  in Eq. (3.14) is the grad-B drift velocity 

vdrift =
mvgyro

2

2qB
(−∇⊥B) × B

B2
 (3.15) 

The grad-B drift speed increases with increasing mvgyro
2 / 2 .   

 

For vdrift << vgyro , the perpendicular speed, 

� 

v⊥ , of the charge particle is approximately equal 

to 

� 

vgyro .  Thus, it is commonly using the following expression to denote grad-B drift 

vdrift =
mv⊥

2

2qB
(−∇⊥B) × B

B2
 (3.16) 

In this case, the grad-B drift speed increases with increasing perpendicular kinetic energy.  

Grad-B drift cancels magnetic gradient effect in magnetization current to be discussed in 

section 3.2.  As a result, the net current (diamagnetic current, to be discussed in section 3.2) 

has little dependence on the magnetic gradient.  Both grad-B drift and curvature drift of the 

energetic particles in the ring current region can reduce time scale of the third periodic 

motion (periodically drifting around the Earth) from 24-hour co-rotating period to only a few 

hours.  Thus, the third adiabatic invariant condition may be applicable to these energetic 

particles in the ring current region. 

 

3.1.5. Polarization Drift 

 

Let E = ŷE(t) , B = ẑB , v(t) = vgyro(t) + VE×B(t) + Vpolarization  

The equation of motion becomes 

 

v(t) = vgyro(t) + VE×B(t) =
q
m
[ ŷE(t) + (vgyro(t) + VE×B(t) + Vpolarization ) × ẑB]  (3.17) 

where 

 

vgyro(t) =
q
m
vgyro(t) × ẑB  (3.18) 

VE×B(t) =
ŷE(t) × ẑB

B2
= x̂

E(t)
B

 (3.19) 

Thus 
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VE×B(t) = x̂
E(t)
B

 (3.20) 

Substituting Eqs. (3.18)~(3.20) into Eq. (3.17) yields 

 

VE×B(t) = x̂
E(t)
B

=
q
m
Vpolarization × ẑB  

or 

 

Vpolarization = ŷ
m E(t)
qB2

 (3.21) 

Polarization drift can result in polarization current.  Electric current at the wave front of 

MHD Alfven wave is a well-known example of polarization current in space plasma. 

 

3.2. Fluid Drift 

 

Let us consider a non-uniform plasma system with a sharp density or pressure gradient in the 

direction perpendicular to the ambient magnetic field.  Since gyro motion of a charge 

particle can reduce/enhance magnetic field magnitude inside/outside its orbit.  The net 

effects of gyro motions in high-density (or high-pressure) region can result in an effective 

electric current located at the density-gradient (or pressure-gradient) region.  In this section, 

we shall use ions’ and electrons’ momentum equations to determine drift velocity of ions and 

electrons at the pressure-gradient region.  Similarly, one-fluid momentum equation is used 

to determine effective electric current (so-called diamagnetic current) at the pressure-gradient 

region.   

 

3.2.1. Ions’ Diamagnetic Drift Velocity 

 

Momentum equation of ion fluid 

nimi (
∂Vi

∂ t
+ Vi ⋅∇Vi ) = −∇pi + nie(E + Vi × B)  (3.22) 

where 

� 

ni, Vi, and pi  are ions’ number density, flow velocity, and thermal pressure, 

respectively.  For steady state (

� 

∂ /∂t = 0) and for 

� 

Vi ⋅ ∇Vi = 0 , 

� 

E = 0, Eq. (3.22) yields 

−∇pi + nieVi × B = 0  (3.23) 

Thus, we obtain ions’ diamagnetic drift velocity 
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Vi =
−∇pi × B
nieB

2  (3.24) 

 

3.2.2. Electrons’ Diamagnetic Drift Velocity 

 

Momentum equation of electron fluid 

neme(
∂Ve

∂ t
+ Ve ⋅∇Ve ) = −∇pe − nee(E + Ve × B)  (3.25) 

where 

� 

ne,Ve, and pe  are electrons’ number density, flow velocity, and thermal pressure, 

respectively.  For steady state (

� 

∂ /∂t = 0) and for Ve ⋅∇Ve = 0 , 

� 

E = 0 , Eq. (3.25) yields 

−∇pe − neeVe × B = 0  (3.26) 

Thus, we obtain electrons’ diamagnetic drift velocity 

Ve =
−∇pe × B
ne(−e)B

2 =
∇pe × B
neeB

2  (3.27) 

 

3.2.3. Diamagnetic Current 

 

We define one-fluid mass density 

� 

ρ  to be 

ρ = nimi + neme  (3.28) 

and flow velocity 

� 

V  to be ions and electrons center of mass flow velocity 

V =
nimiVi + nemeVe

nimi + neme

 (3.29) 

We can also define one-fluid thermal pressure satisfies 

nimi (
∂Vi

∂ t
+ Vi ⋅∇Vi ) +∇pi

⎡

⎣
⎢

⎤

⎦
⎥ + neme(

∂Ve

∂ t
+ Ve ⋅∇Ve ) +∇pe

⎡

⎣
⎢

⎤

⎦
⎥  

= ρ(∂V
∂ t

+ V ⋅∇V) +∇p  (3.30) 

Then, Eq. (3.22) + Eq. (3.23) yields one-fluid momentum equation 

ρ(∂V
∂ t

+ V ⋅∇V) = −∇p + ρcE + J × B  (3.31) 

For steady state (

� 

∂ /∂t = 0) and for V ⋅∇V = 0 , 

� 

E = 0 , Eq. (3.31) becomes 

−∇p + J × B = 0  (3.32) 

Thus, we obtain diamagnetic current density 
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J = −∇p × B
B2

 (3.33) 

Most current sheets in the space plasma are maintained by a density or pressure gradient.  

One can obtain electric current direction at magnetopause, plasmapause, and plasmasheet 

based on Eq. (3.33).   

 

Exercise 3.7. 

Determine electric current direction at:  

(1) dayside magnetopause  

(2) nightside magnetopause 

(3) plasmapause  

(4) plasmasheet 

 

For convenience, we shall use V to denote flow velocity and use v to denote a single particle 

velocity.  Fluid drift motion plays an important role on generating electric currents in our 

magnetosphere.  These current systems can generate new magnetic field components to 

make our magnetosphere different from a dipole field structure.   

 

3.2.4. Magnetization Current 

 

The diamagnetic current obtained in last subsection is indeed a net current of (1) current due 

to diamagnetic motion of charge particles (it is called magnetization current), (2) current due 

to particles’ curvature drift, and (3) current due to particles’ grad-B drift. 

 

By definition, magnetization current is  

J = ∇ ×M = ∇ × (−µi
i
∑ B̂)  (3.34) 

where 

� 

−µi
ˆ B  is the magnetic momentum of the ith particle.   
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Exercise 3.8. 

Show that for low temperature plasma with isotropic pressure the net current due to 

curvature drift and grad-B drift discussed in sections 3.1.3 and 3.1.4 and the magnetization 

current in Eq. (3.34) is equal to the diamagnetic current in Eq. (3.33).   

 

For high temperature plasma, we have to use kinetic approach to determine net current.  The 

net current obtained from kinetic approach is not identical to the diamagnetic current in Eq. 

(3.33).  Kinetic approach is an advanced subject of plasma physics, which will be discussed 

in next semester.   
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