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Nonlinear Two-Fluid Hydromagnetic Waves in the Solar Wind:
Rotational Discontinuity, Soliton, and Finite-Extent

Alfvén Wave Train Solutions

L. H. Lyu anp J. R. KAN
Geophysical Institute, University of Alaska, Fairbanks

Nonlinear one-dimensional constant-profile hydromagnetic wave solutions are obtained
in finite-temperature two-fluid collisionless plasmas under adiabatic equation of state.
The nonlinear wave solutions can be classified according to the wavelength., The long-
wavelength solutions are circularly polarized incompressible oblique Alfvén wave trains
with wavelength greater than hundreds of ion inertial length. The oblique wave train
solutions can explain the high degree of alignment between the local average magnetic
field and the wave normal direction observed in the solar wind. The short-wavelength
solutions include rarefaction fast solitons, compression slow solitons, Alfvén solitons and
rotational discontinuities, with wavelength of several tens of ion inertial length, provided
that the upstream flow speed is less than the fast-mode speed. The Alfvén solitons and
rotational discontinuities are super-Alfvénic compression waves if the upstream Alfvén-
mode speed is greater than the sound speed; otherwise, they are sub-Alfvénic rarefaction
waves. The density and magnetic field variations of these short-wavelength waves are
shown to obey the following two rules: (1) all compression waves are left-hand polarized
and all rarefaction waves are right-hand polarized, due to the ion inertial effect, (2) the
density variation and the magnetic field magnitude variation are in phase if the flow is
supersonic, but out of phase if the flow is subsonic, which is a consequence of conservation
of the momentum flux. The two-fluid rotational discontinuity solution obtained in this
study is highly circularly polarized, with a variable angular rotation rate. The total
angle of rotation is limited to less than or equal to 180°, which is consistent with the
rotational discontinuity observed in the solar wind. The upstream flow speed of the
two-fluid rotational discontinuity must deviate slightly from the Alfvén-mode speed; the
downstream flow speed is equal to the local sound speed. The formation of the two-
fluid rotational discontinuity depends critically on the dispersion effect which converts the
Alfvén mode to the ion acoustic mode.

1. INTRODUCTION

Rotational discontinuities with structures of a few
tens of ion gyroradii have been observed at the mag-
netopause [e.g., Sonnerup and Ledley, 1974] and in the
solar wind [e.g., Martin et al., 1973; Burlaga et al., 197T;
Lepping and Behannon, 1986]. The absence of rotational
angle greater than 180° in the highly circularly polar-
ized rotational discontinuity has been reported by Son-
nerup and Cahill [1968] and demonstrated in the simu-
lation results by Swift and Lee [1983]. Theoretical un-
derstanding of this particular property of the rotational
discontinuity is still lacking.
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Since neither the standard MHD Rankine-Hugoniot
(R-H) jump condition nor a modified MHD R-H jump
condition [e.g., Hudson, 1971, 1973] can explain the ob-
served rotational limit in the rotational discontinuity,
this feature must be a non-MHD effect. The thick-
ness of the rotational discontinuity observed in the so-
lar wind indicates that the ion inertial effect plays an
important role. The simplest plasma model which re-
tains the ion inertial effect is the two-fluid plasma equa-
tions [e.g., Petschek, 1958; Fishman et al., 1960; Hain et
al., 1960; Stringer, 1963; Formisano and Kennel, 1969].
This fact motivates us to seek nonlinear constant-profile
wave solutions in finite-temperature two-fluid plasmas.
The solutions obtained in this study consist of long-
wavelength wave trains and short-wavelength solitons
and rotational discontinuities. Specifically, the 180° ro-
tational limit in the rotational discontinuity is shown to
be a basic characteristic of the two-fluid rotational dis-
continuity solution obtained analytically in this paper.
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In addition to the rotational discontinuity, we also
address the controversial issue of alignment between
the wave normal and the local average magnetic field
of nonlinear Alfvénic fluctuations observed in the so-
lar wind. These fluctuations consist of large amplitude
waves moving away from the Sun around the Alfvén
speed relative to the solar wind. The structure of the
low-frequency (10° ~ 102 Hz) Alfvénic fluctuations
observed in the solar wind is often a finite-extent wave
train structure [e.g., Belcher and Davis, 1971; Daily,
1973]. The magnetic field of the observed wave train
structure is highly circularly polarized with a well-
defined wave normal direction determined by the mini-
mum variance method [Sonnerup and Cahill, 1967). The
wave normal direction of the observed Alfvénic fluc-
tuations is found to be highly parallel to the “local
average magnetic field” in both high-speed and low-
speed streams of the solar wind and at different heli-
ographic distances [e.g., Belcher and Davis, 1971; Daily,
1973, Solodyna and Belcher, 1976; Denskat and Neubauer,
1982]. According to the geometrical optics [e.g., Holl-
weg, 1975], the propagation direction of a planar non-
linear Alfvén wave should be refracted by the veloc-
ity shear in the solar wind. Therefore, the geometrical
optics predicts that the distribution of the angle be-
tween the wave normal and the “upstream magnetic
field” should vary with the location of observation and
cannot be expected to always peak around zero degree.
Under the commonly adopted assumptions that the “lo-
cal average magnetic field” is equal to the “upstream
magnetic field” and that the observed wave normal is
parallel to the “local average magnetic field,” one is led
to the questionable conclusion that the wave normal is
parallel to the “upstream magnetic field.” This dubious
conclusion is in conflict with the prediction of the geo-
metrical optics [e.g., Solodyna and Belcher, 1976; Barnes,
1981, 1983]. In an attempt to circumvent this conflict,
the idea of turbulence is proposed to explain the prefer-
ential orientation of the wave normal along the average
magnetic field direction [Barnes, 1981, 1983; Matthaeus
and Goldstein, 1982]. On the other hand, Solodyna and
Belcher [1976] argued that the conflict could be due to
inapplicability of the minimum variance method. They
even suggest that the minimum variance method can-
not determine the wave normal direction, but gives the
average magnetic field direction.

In this paper we show that the high degree of align-
ment between the wave normal and the local average
magnetic field is a basic characteristics for both paral-
lel and oblique Alfvén wave train solutions. Therefore,
the “local average magnetic field” need not be in the
same direction as the ambient magnetic field. Hence,
the wave normal of the observed nonlinear Alfvénic fluc-
tuations may indeed oblique to the ambient magnetic
field.

Finally, the possible relationship between the soli-
ton solutions obtained in this paper and the turbulent
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Alfvénic fluctuations observed in the solar wind will be
discussed in this paper.

2. FORMULATION

In this study, we seek nonlinear constant-profile
(8/0t = 0) one-dimensional (V = xd/dz) wave so-
lutions in the collisionless finite-temperature two-fluid
plasmas. Based on the pseudo potential method, so-
lutions of nonlinear constant-profile waves in two-fluid
plasmas have been obtained in both cold plasma [e.g.,
Davis et al., 1958; Montgomery, 1959; Saffman, 1961;
Kellogg, 1964; Morton, 1964; Cavaliere and Engelmann,
1967] and finite-temperature plasmas [Hain et al., 1960;
Kakutani et al., 1967; Crevier and Tidman, 1970; Coroniti,
1971; Churilov, 1980; Ziegler and Schindler, 1988]. How-
ever, most of the nonlinear wave studies in the finite-
temperature two-fluid plasma emphasized applications
to shock structures, since the thickness of shock waves is
also of the order of the ion gyroradius. The formulation
in this study is similar to the previous studies but gener-
alized to include the rotational discontinuity solutions.
To make the present paper self-contained with unified
notations, a summary of the formulation is necessary.

Under the quasi-neutrality approximation, the num-
ber densities of the ions and electrons are taken to be
n; = n, = n. The ion and electron pressures are as-
sumed isotropic and each follows the adiabatic process.
The basic equations for these waves are the standard
time-independent (8/8t = 0) two-fluid plasma equa-
tions which can be simplified and written in the Gaus-
sian units as given below.

The continuity equation (of the ath species, i.e., ions
and electrons)

V:(paVa) =0
The momentum equation
Va * VVa + (1/pa)Vpa

—(ea/Mmac) (cE+4+ Ve xB) =0

(1)

(2)

The energy equation

{3/2)vu * Vpa + (5/2)Pav *Va=0 (3)

The Maxwell equations
vV-B=0

VXE=10
V X B = 4mne(V; — V,)/c

(4)
(5)
(6)

where ions are assumed to be protons, c is the speed of
light, €4, Mu, Nay Pa(= NaMma), Va, and p, are respec-
tively the charge, mass, number density, mass density,
flow velocity, and thermal pressure of the ath species.
Note that the Poisson equation can be ignored under
the quasi-neutrality approximation.
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The boundary condition on the upstream side (z —
—o0) is assumed uniform, namely, all derivatives van-
ish. Wave propagation is oblique to the upstream mag-
netic field with a wave normal angle ,. We choose
the coordinates such that the upstream magnetic field
is in the zy-plane, i.e.,B, = [Bg,, By,,0], where the
subscript o indicates the upstream quantities. For
B, = (BZ, + B;O)lf'g, the wave normal angle becomes
8, = cos~'(B;,/B,). We choose a moving frame such
that the upstream flow velocity is in the z-direction, i.e.,
the normal incidence frame [e.g., Goodrich and Scudder,
1984]. Based on the uniform boundary condition the
current density must vanish on the upstream side so
that Vi, = V,, = V, = %V, is the upstream flow
velocity. Without loss of nonlinearity, we write the
total magnetic field B(z) = B, + b(z). From (4),
B; = B;, =constant, so that b(z) has only the y and
z components, i.e., b = [0,by,b,]. Likewise, (5) leads
to constant EF, and E,. It can be shown that the up-
stream electric field in the normal incidence frame is
given by E, = —2V,,B,,/c, so that E;, = E,, = 0, and
E, = E,, = —V,By,/c. Based on the quasi-neutrality
approximation, (1) leads to Vyi(z) = Vie(z) = Vi(z).
The isentropic equation of state for each species can be
obtained from (3), i.e.,

o

PaVy = PaoVy (7
where p,, are the upstream pressures of the ath species
(ions or electrons), and v = 5/3.

For constant-profile wave solutions, it is convenient
to cast (1)~(6) into conservative forms. Under the uni-
form boundary condition, the conservation equations
are
conservation of mass flux

{Pi( J + pe(z)] V; (m} = poVs (8)
conservation of momentum flux
B 0 2 2
(Pe s P.«,) + poVo Vo + (_F_tiﬂ_)ﬂ
8
Bz0
= po + PoVnz + _é}fr“ (9)
B.b
(pg";’,i-l-pe%e)vx—?y:':o (10)
B, b,
(Pi‘ci+PeV;c)Vz_ 4; =0 (11)

and conservation of energy flux
1
Lo (V2 4+ VA VE) 400 (V2 4 VA VRNV
Vo Byo(Byo + by)
4

1 3 V.B2,
P ,,V wRye 1

B | o

58 (pi +pe)Vm +

Il
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where p, = (m; + m.)n, and p, = pi, + Peo are the
total mass density and pressure on the upstream side,
and n, is the upstream number density of each species.
Note that we have neglected the £E?/B? terms (of order
VZ/c? « 1) in (9) and (12).

_ Defining 7 by dr = dz/V; and using the notation
A = dA/dr = V,(dA/dz) to indicate the convective
derivative, the momentum equation (2) can be rewritten
in the component form as

Vea = +(ea/mac) [cEz + Vyabs — Via(Byo + by)]
_(l/povo)pa =0 (13)
ifﬁ"l = +(eﬂ/mrxc) [VzaBzo 2 Vzbz] (14)

Vm: = +(en/mac)[_VOByﬂ g Vm(BnO + by)

_Vy(lB:n] (15)

where V; = V,q for each species. Likewise, multiplying
Vz to (6) leads to

!:Jy = +(4we/c)n,
b, = —(4me/c)n,

O(I’rxi_
Vo (Vs

Vze)

O (16)

Differentiating (16) once with respect to r leads to

By = +(4me/c)n,V, (V,. = I}ze)

¢ S (17)
by = —(4me/c)noVs (V,,; o Vy.,)
Solving (10), (11), and (16), yields
Vyi,e Bz B.'co L PR Mg iC bz
‘/; 41’1"poV Bo Bc €e ;Bo BD
(18)
Vzi,s Lo BE Byo b, me,ic _!ilj_
Vo ~ 4mpoVE \ B, B,  €.iBs Bo

Using (18) to eliminate the V,, and V,, in (14) and
(15) and then substituting the latter results into (17),
the governing equation for the wave magnetic field can
be obtained in a dimensionless form as

Nt L

MZ,9.,9;,

g -] o0 (1)
e LA

T - {[ar _V;U,;,b;)] )
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where My, = V,/Cao and Cao = (B2?/4mp,)!/? are
the upstream Alfvén Mach number, and Alfvén speed.
The dimensionless quantities denoted by the super-
script * are normalized by a characteristic quantity
on the upstream side. They are defined as B;, =

m/B,, = cosé,, By, = JE»‘,,,.,/BLI = sin#f,, b; = b?,,/B.,,
b; = b, By VA= V,./V(,, = @/ o, TR i TG,
A* =dA"/dr* = V;dA" [dz", A* = d? A" Jdr*?, Q) =

2,,/Q,, and 2 = Q,,.,/ﬂo, where Q;, = eB,/m;c and
., = eB,/m.c are the upstream ion and electron cy-
clotron frequencies, and @, = V,/x,. The choice of
the characteristic length z, will be discussed later. The
equation for V,"(b;,b;) in (19) and (20) can be obtained
from (9) in which p; and p, can be eliminated by (7).
The resulting equation can be written as

ﬁ() - 1
v o B! ol 00, ot
+ 2MA G pliprerc e 2MA(> [( yo + b ) z 1
Bo B,:
P i ek ate P IS 21
oz, T o, ()

where 83, = po/ (83/81) on the upstream side.
Multiplying m? to (13) and taking the difference be-
tween the resulting ion and electron equations, one ob-
tains the wave electric field E;, upon eliminating pq,
Vya, and V,, by (7) and (18). The result can be writ-

ten as
B: B: bt v 7l
- b* i EQ gu z T 1
E! (byt A Mia (Q:o)/( + Tw)]

6-3)-

where ¢* = ¢/V,, Ei = Ez/B,, and T, /Tio = Peo/Pio
is the temperature ratio of electrons and ions on the
upstream side. Both V;(b},b;) and V7 (b;,b;) in (22)

can be obtained from (21). By d_iﬁ'erentlatmg (21) once
with respect to 7 and solving V., one obtains

W Losfig
2Mﬁn t-H’l my lio

) E)] (22)

d
: == [(Bo +8))° + 7%
V, = (23)
2M2 7:60 1 _1
2M2 yprl
By introducing the local sound speed Cs =

[v(p: + pe)/(pi + ,oc)]l"!:2 and the local sound Mach
number Ms = V. /Cs, it follows that

Mg = MAo\f 2V;T+1/Tﬁo

When Mg = 1, the denominator in (23) vanishes. In
this case, V,* can be solved by differentiating (21) twice
with respect to 7*, which yields

(24)
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i;.; = i\/_

where the sign is determined such that V;* is a contin-
uous function. By introducing B} = [(By, + by)* +

b:2]1/2, it can be seen that V. remains finite at Ms = 1
1 (ie., B} = 0 and
B} < 0). This is in contrast with previous claims [e.g,,
Kakutani et al., 1967; Crevier and Tidman, 1970].

Equations (7), (8), (18)~(25) are the governing equa-
tions of nonlinear constant-profile waves. Equations
(19), (20) and (23) can be solved numerically for b(z),
b(z) and V(z) when Ms # 1. The results can be
substituted into (7), (8), (18) and (22) for the remain-
ing variables p,(z), p(z), Vya(z), Via(z) and E(z).
When Mj approaches 1, (23) must be replaced by (25).
However, (25) is difficult to handle numerically. This
difficulty can be overcome by the “pseudo potential
method” discussed below.

According to the pseudo potential method [e.g., Davis
etal., 1958; Montgomery, 1959; Hain et al., 1960; Sagdeev,
1966; Crevier and Tidman, 1970], (19) and (20) can be
viewed as the “equations of motion” of a “fictitious par-
ticle”. The “coordinate” of the “fictitious particle” is
the wave magnetic field b. One can define a “veloc-
ity” (b) independent pseudo potential ¥, such that the
“equations of motion” (19) and (20) can be rewritten
as

d? [(}3;0 + bt)?

ik O S
dr*? 5

(v + 1)Bo

(25)

if B} is a maximum at Ms =

b* 6‘1’(5;,6;)
MA()Q:UQZO Bb*
1 1 B
s o b 2
(Q:o n;o) MAO ( 6)
by e UMY
M30.9:, ab;
1 1 B;O .t
+ (g - az) v
where ¥ is defined by
av(b;,b;) }j"‘2
! z i V* b*’bau B b
ab; [MAO (y z]( ‘yt)+ y)
B*(zj *
i 2
6‘1’(&;!!’:) e Bj‘:g " £ * -

The function ¥ is a legitimate potential function, since
the partial differentiation of (28) with respect to b; is
identical to the partial differentiation of (29) with re-
spect to by. The analytic form of the pseudo potential
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¥(b,, b;) can be obtained by the following procedures
le.g., Hain et al., 1960; Crevier and Tidman, 1970].

Multiplying (26) by b}, (27) by b%, and adding the
resulting equations, one obtains an equation which can
be integrated once and written as

l b*2+b;2
2 M3,0.,0;,

L 1td

+W(b}, ;) =0

(30)

where ¥ = 0 has been chosen on the upstream side.
By using (18) to eliminate Vyq, V.o and using (7) to
eliminate p;, p., the conservation of energy flux in (12)
can be rewritten in a dimensionless form:

2
MAo

56,
w2 Orrel— * - *
9 Vz: +TVz T"""Byo(B n+b‘y)

v
*2
B.’L‘o

1 6;2+6:2
2Mi0

2M2 QF Q-

Ao™ o " eo

+ (8% +b;%) +

My 5,

B:?
o T T gsd]

¥o (31)
Comparing (30) and (31), the pseudo potential ¥ (b}, b})
can be written as

M

W(b],b) = f°{[v;(b;,b;)]2-1}

+% {vz;.80)7 -1}

2
To

+B, b + SM2_

yo'y

(6% +b;?) (32)

where the equation for V' (by,b;) is given by (21).

3. ANaLYTIC SOLUTIONS

3.1. General Solution Behavior

The magnetic field and density of nonlinear wave
solutions can be examined using the pseudo potential
method. The main results are summarized as follows,
(1) The magnetic field variation of nonlinear Alfvénic
fluctuations follows closely the equipotential contour of
¥ and the polarization of the magnetic field is governed
by the gradient of ¥, when M, < cos8,(m;/m,)"2.
(2) The density p(z) and the total magnetic field B(z)
are in phase when Mg > 1 but out of phase when
Ms < 1. These results are obtained by the following
procedure.

The vector form of the equations of motion in (26)
and (27) can be written as

Cl.il;* = —Vp ¥ + CZB;O;c X b* (33)
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(a)

Fig. 1. TIllustrating of the force balance of the ion-scale tra-
jectory which is characterized by the motion along equipo-
tential contours. The magnetic field polarization has to
be (@) left-handed when the equipotential contour curves
around a low potential center, and (b) right-handed when
the equipotential contour curves around a high potential
center, so that the velocity dependent force term (C B} % X

l.)') can balance the potential gradient force term (— Vy+ ¥)
in (33).

where C, = 1/M3,Q;0Q;, C. = (Q, -
0,)/ M3,9.Q;, and Vy. = §8/8b; +88/8b}. For con-

venience, we define L; = Cy,c088,/Q;, M4, as an ion
scale length, L, = V,,/1,,co88, as an electron scale
length, and L = (L,-L,,,]l"2 = CA,,/[Qit,ﬂe(,]lfz as a
hybrid scale length, so that the motion of the “ficti-
tious particle” can be classified into three simple forms
based on the three scale lengths.

When the wave spatial variation is of the order of
the ion scale length, L;, or longer, the “inertia force”
term (C;b*) in (33) is negligible. The balance be-
tween the “potential gradient force” term (—Vp. ¥) and
the “velocity dependent force” term (C;B; % X b*) re-
sults in a “motion along equipotential contours.” This
type of trajectory will be called the ion-scale trajec-
tory. The magnetic field polarization associated with
the ion-scale trajectory is illustrated in Figure 1. As
can be seen in Figure 1, the polarization with respect
to X B, have to be (la) left-handed when the equipo-
tential contour bends around a low potential center,
and (1b) right-handed when the contour bends around
a high potential center, so that the “velocity dependent
force” (C3B; % X b*) can balance the “potential gradi-
ent force” (—Vy+¥) in (33).

When the wave spatial variation is of the order of the
electron scale length, L., the “inertia force” term will be
large enough to balance the “velocity dependent force”
term in (33), resulting in a right-handed “gyromotion.”
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This type of trajectory will be called the electron-scale
trajectory.

When the wave spatial variation is of the order of the
hybrid scale length, Ly, the inertia force term can bal-
ance the potential gradient force term in (33), resulting
in trajectories which must cross equipotential contours.
This type of trajectory will be called the hybrid-scale
trajectory.

To study the Alfvénic fluctuations in the solar wind,
we restrict our analysis to the upstream flow speed such
that M4, < cosf,(m;/m,)'/2. It can be shown that for
My, < cosBy(m;/m,)'/?, the magnetic field variation
is predominantly governed by the ion-scale trajectory.
The electron-scale trajectory can coexist with the ion-
scale trajectory. However, owing to the uniform bound-
ary conditions (d/dz = 0) on the upstream side, it can
be shown that the magnetic field variation described
by the electron-scale trajectory is of small amplitude
compared with B, (6b ~ B,m,./m;). If the “poten-
tial gradient force” along the equipotential contour is
nonuniform, the trajectory cannot follow the equipo-
tential contours exactly. The trajectory will deviate
slightly from the equipotential contour (i.e., the hybrid-
scale trajectory) and shift toward the low potential side
by an amount 6b ~ B,(m,/m;)'/2. Hence, the magnetic
field variation of the nonlinear Alfvénic fluctuations is
strongly guided by the equipotential contour of ¥ and
the polarization of the magnetic field is governed by the
gradient of ¥. However, care must be taken in evaluat-
ing the equipotential contours of ¥ from (32), because
V; is a double value function of (b}, b;), so that ¥ is
also a double value function of (b}, b;) [e.g., Crevier and
Tidman, 1970].

Figure 2 shows the double value nature of V! at b} =
0, where Z indicates B} = 0 (i.e., by, = =By, b; = 0).
Points X and Y divide the closed curve into two parts:
the solid curve and the dashed curve, each of them is a
single value function of b;. The characteristics of these
two curves can be obtained by differentiating (21) once
with respect to by, i.e.,

ov; 4 B;D+bj/(_}_2__1)
ab; M2, M:

where Mjs is given in (24). According to (34)
oV, /b, — oo as Ms — 1, while 8V /0b, — oo at
X and Y as can be seen in Figure 2. Thus, Mg =1 at
X and Y which will be called the sonic points. More-
over, Mg increases with increasing V.’ according to
(24). Hence, the solid curve is the supersonic curve
(Ms > 1), and the dashed curve is the subsonic curve
(Ms < 1). The above discussion of the double value
nature is equally applicable to the entire by-b; space.
Therefore, the contour of ¥ or V. must be evaluated
separately for Mg > 1 and Ms < 1.

The density variation of the waves can be obtained
from the constant V. contours as discussed below.

(34)
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Vx(b,‘,‘, bz'-O)
Mg >1 ___\
(Ms '1]
(Ms =1)Y b X
3 LT e =
MS (1._"} z
- b,
——BYQ' 0

Fig. 2. Plot of the cross-section of function V; (b, b;) at
b; = 0. Since the constant V;(b;, b;) contours are circles
centered at B] = 0, this cross-section diagram infers that

Ve(x) and B (z) are out of phase when Mg > 1 and in
phase when Mg < 1.

From (21), it follows that the constant V' contours are
circles centered at Z where B] = 0. Since Figure 2 rep-
resents a typical configuration for the cross section of
V. at b} = 0, it follows that V' increases monotonically
toward Z on the supersonic surface (Ms > 1) but de-
creases monotonically toward Z on the subsonic surface
(Ms < 1). Hence, V. (z) and B () are out of phase on
the supersonic surface but in phase on the subsonic sur-
face. According to (8), the variations of p and V, are
out of phase. Combing the relationship between B,
V: and p, it follows that the density p(z) and the total
magnetic field B(z) = (B2 + B2 )'/? are in phase on
the supersonic surface, but out of phase on the subsonic
surface.

3.2. Wave Trains and Solitons

The nonlinear wave solutions will be discussed based
on the upstream flow speed V,, relative to the upstream
slow-mode speed (Vsp,,), Alfvén-mode speed (Vyx, =
C4ocos8,), fast-mode speed (Vg,) and the sound speed
(Cso), where Vp, and Vs, are defined by

Yo
VSLU

1
[_2. (Céo + Cio t J(Cg'u H Cfla)z o 40.%0"42.’(0)]

Figure 3 shows the structure of ¥. The upper two
diagrams sketch the three-dimensional structures of
¥(by,b;) for two different ranges of the upstream flow
speed as indicated. The lower six diagrams of Figure 3
show the cross sections of ¥ at b} = 0, where (al), (bI)
are for V, = Vaxo; (a2), (b2) are for V, slightly less than
Vaxo; and (a3), (b3) are for V, slightly greater than
Vaxo. The points X, ¥ and Z in this figure are the
same as defined in Figure 2. Point A is the “upstream
point” in which V3 = 1 and b}, = b; = 0. From (28) and
(29), it can be shown that the upstream point A is a

1/2
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(8) Vg >V5>Cgn and Vo> Ceq

supersonic
surface

¥ (b, b,")

sonic curve
[ Ms =1}

subsonic
surface
(Mg <1)

¥ (by", b,"=0)
(at) %

(B)Vg0<Vo<Cso and Vpyo < Coq

SUpBI’SOI"IiC
surface
(Mg >1)

¥ (by*, b,*)

ssuub::;;c onic curve
(Mg <1) (Mgm1)
(b1) ¥ (b,‘, b,*=0)
/z\,q\
FEN TN Y
Y X

Fig. 3. Sketches of the structure of the pseudo potential . The upper two diagrams show the three-
dimensional structures of 'I'(b;, b;) for different plasma temperature and upstream flow speed as indi-

cated. The lowers six diagrams show the cross-section of ¥ when V,, is around V4x,. The point A is
the upstream point in which ¥ = 0, V. = 1 and by =b; =0.

flat point at which 0¥ /9b; = 0¥ /8b; = 0. The pseudo
potential ¥ consists of a supersonic surface (Ms > 1)
and a subsonic surface (Mg < 1). The supersonic sur-
face always lies above the subsonic surface. The two
surfaces meet at the sonic curve (Ms = 1). Form the
lower six diagrams, it can be seen that the ¥ tilts up
(down) on the side of ¥ when V,, is less (greater) than
Vaxo, but sits upright when V, = V4 x,.

For convenience, we define the surface containing the
upstream point A as the “upstream surface.” Figure 4
illustrates the equipotential contours on the upstream
surface of the six cases given in Figure 3. The points
A, B,C, D, X,Y, and Z in Figure 4 correspond to
the points shown in Figure 3. The dashed circle is the
sonic circle (Mg = 1) centered at Z. The potential ¥
in the shaded region is lower than in the blank region.
It can be seen that the ¥ = 0 contour is a circle passing
though points 4 and B when V,, = V4 x,, but split into
two loops when V, slightly deviate from V4x,. The

upstream point A in Figure 4 is a saddle point in panels
(b2) and (a3), a minimum point in panel (a2), and a
maximum point in panel (b3).

According to the uniform boundary condition and
the discussion in section 3.1, for cases of My, <
cos 8,(m;/m,)/?, the magnetic field hodogram of the
wave solution must start from the upstream point A,
and follow closely the equipotential contour ¥ = 0. The
solutions associated with the equipotential contours in
Figure 4 are described below.

3.2.1. Oblique wave train solutions. When V, =
V4xo, nonlinear oblique Alfvén wave train solutions ex-
ist as labelled by 1 ~ 4 in panels (a!) and (b) of Fig-
ure 4. These wave train solutions are characterized by
constant density and circular polarization. Their wave
length are at least two orders of magnitude greater than
the ion gyroradius. This means that these waves exist
only in the MHD limit. The arrows in Figure 4 in-
dicate the polarization directions for B,, > 0. The
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Fig. 4. Plots of constant pseudo potential contours on the
upstream surfaces with the cross-section of ¥ given in Fig-
ure 3. The pseudo potential ¥ in the shaded region is lower
than in the blank region, The dashed circle is the sonic circle
where Ms = 1. The contour plots are used to obtain the
magnetic field hodogram of the nonlinear wave solutions,
which must start from the upstream point A, and follow
closely the equipotential contour ¥ = (. The magnetic
field hodogram of the MHD wave train solutions 1 ~ 4 and
the two-fluid soliton solutions 5 ~ 8 are obtained and la-
belled in panels (al), (bl), (b2), and (a3). The polarization
direction of each solution is denoted by arrow for B, > 0.
Characteristics of the solutions are given in section 3.2. The
solution 6 will be identified as the slow soliton, the solution
8 will be identified as the fast soliton, the solution 5 and
T will be identified as the Alfvén solitons in section 4. No
nonlinear wave solutions are found in panels (a2) and (b3).
The B, > 0 has been assumed in plotting the arrow of
each solution.

polarization is left-handed in solutions 1 and 4, but is
right-handed in solutions 2 and 3.

The wave train solutions 1 ~ 4 can be of finite extent
if required by the boundary condition. This can occur
because the equipotential contour for solutions 1 ~ 4 is
on a “flat” circle passing through A and B in panels (al)
and (bl) of Figure 4. The flate nature of the contour
can be seen by comparing panels (al) and (b!) in Figure
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4 with those in Figure 3. From the above discussion,
we conclude that the finite-extent Alfvén wave train
solution can exist in two-fluid plasmas.

3.2.2. Two-fluid soliton solutions. When V,, slightly
deviate from Vjx,, four types of soliton solutions can
be obtained as labelled by 5 ~ 8 in panels (b2) and
(@3). The characteristics of the four soliton solutions
are as follows: solution 5: right-hand polarized rarefac-
tion solitons, in which p(z) and B(z) are out of phase;
solution 6: left-hand polarized compression solitons, in
which p(z) and B(x) are out of phase; solution 7: left-
hand polarized compression solitons, in which p(z) and
B(z) are in phase; solution 8: right-hand polarized rar-
efaction solitons, in which p(z) and B(z) are in phase.
As can be seen that the magnetic field polarization is
left-handed for all compression solitons; whereas, the
polarization is right-handed for all rarefaction solitons.
These properties of the soliton solutions will be dis-
cussed later in section 3.5.

The magnetic field polarization in solutions 1 ~ 8 can
be determined based on the discussion of Figure 1. The
phase relationships between p(x) and B(z) follows from
the discussion given in the last paragraph of section 3.1.
The density variations are determined by the relation
between p(z) and B(z) combined with the variation of
B, (z) (since By, is constant), which can be obtained
directly form Figure 4 (i.e., the distance from the point
Z to the hodogram of magnetic field). For example,
in panels (al) and (b!), B, (z) is constant, so is the
density. Whereas, in panels (b2) and (a3), the distance
Z A is greater than ZC but less than Z D, so that B(z)
in the wave transition region increases for outer loop
solutions 5 and 7, but decreases for inner loop solutions
6 and 8. The spatial profiles, p(z), B(z), ¢(z), by(z),
and b,(z), of the solutions 1 ~ 8 are sketched in Figure
5, qualitatively, where ¢ is the phase angle defined by
tan~'(B,/By). A numerical result will be presented in
section 4 for a comparison with observations.

No large amplitude isentropic wave solutions can ex-
ist when V}, is in between Vx, and Cgs,, as shown in
panels (a2) and (b3) of Figure 4. Because in these two
cases, the equipotential contour passing through the up-
stream point A reduces to A itself, so that the “fictitious
particle” can only gyrate around A in small amplitude
(6b ~ B,m,/m;). Similar results can be obtained when
Vi, < Vgpo (for which the point 4 is a minimum point)
and V, > Vp, (for which the point 4 is a maximum
point, see Crevier and Tidman [1970]) as long as the con-
dition of M4, < cos8,(m;/m.)'/? is satisfied.

3.3. Two-Fluid Rotational Discontinuity

As V, deviates further from V4 x,, the outer loop in
panels (b2) and (a3) of Figure 4 may intersect with the
sonic circle. In these cases, the soliton solution asso-
ciated with the outer loop will turn into a rotational
structure, which is called the two-fluid rotational dis-
continuity.



Lyu anp Kawn : NoNninpan Waves 1N THE SonLar WIND

6531

®
V_

o @
@

p () _.ZL v
B (x) _/\_ _v_
180°[ Vool e

o) 0°[ T 3 oy
~180¢[
T BRI W BT e "4
b, {x)

Fig. 5. Sketches of the spatial profiles for the nonlinear solutions 1 ~ 8, in which B, is assumed to

be positive.

(1) Vg0<Vy<Vaxo<Cso

supersonic surface subsonic surface

{2)050<V“0<VD<VF0

supersonic surface subsonic surface

Fig. 6. Examples of the two-fluid rotational discontinuity
solutions 9 and 0, where B, is assumed to be positive.

Figure 6 illustrates two cases in which the two-fluid
rotational discontinuity solutions exist as labeled by 9,
and 0. Points § and T in Figure 6 are the intersections
of the outer loop of ¥ = 0 contours on the sonic circle.
B, is assumed to be positive in both cases.

Solution 9 in Figure 6 starts from A and ends at S if
Vsro < Vo < Vaxo < Cs,. The characteristics of solu-
tion 9 are similar to that of the soliton solution 5 but
with rotation angle no more than 180°. The maximum
rotation angle (180°) is obtained based on the fact that
¥ is symmetric to the b, axis, so are the locations of
points S and T. Likewise, if Cs, < Vax, < V, < VEo,
the solution 0 in Figure 6 starts from A and ends at T
with characteristics similar to the soliton solution 7 but
with rotation angle no more than 180°. To shown that
the points S and T are legitimate downstream points,
one needs to show that: (1) they are the trapping
points, namely, the “fictitious particle” cannot continue
its trip by going through the ¥ = 0 contour on the other
surface and then return to the upstream point 4; (2) the
Vi is of finite when M5 = 1, Demonstrations of these
two remarks are given as follows. (1) It is seen that
both ST and AS curve around high potential center in
the case of Vsr, < V, < Vaxo, < Cs, in Figure 6. Ac-
cording to the discussion of Figure 1, the “fictitious par-
ticle” moving from A to S will be trapped at the point
S with a small amplitude gyration (b ~ B,m,/m;) on
the downstream side. Likewise, it can be shown that
the “fictitious particle” will be trapped at point 7T in



6532

(@) Co< Cao

[+]

Lyu anp Kan : Nonvingar Waves in THE Sonar Winp

(b) Cso> Cho

NE D
R

.@.©
®.6.©

Fig. 7. The summary of the nonlinear wave solutions in the Friedriche’ diagram. (a) 8, = 0.5; (b)

B, = 1.8.

the case of Cs, < Vaxo < Vo < Vp,. (2) Since the
sonic circle is the outer boundary of ¥ and is centered
at Z where B] = 0, so that B is maximum at the
sonic circle. It follows that B’ (z) is a maximum in the
wave transition region when the flow speed is equal to
the local sound speed. Hence, based on the discussion
of (23)~(25), the V' remains finite as Ms = 1. This is
in contrast with the previous studies [e.g., Kakutani et
al., 1967; Crevier and Tidman, 1970] in which the solu-
tion is believed to diverge on the sonic curve due to the
incorrect conclusion that V* — oo at Ms — 1. It may
be noted that the dispersion effect when Mg — 1, in
the formation of the two-fluid rotational discontinuity
will be discussed later in section 3.5 in detail.

3.4. Summary of Solutions on the Friedrichs’ Diagram

Figure 7 summarizes the solutions in the Friedrichs’
diagram [e.g., Kantrowitz and Petschek, 1966] for V,, less
than Vpg,, to show the dependence of the nonlinear
waves on 8,, M4, and 8B,, where (a) is for Cs, < Cao
and (b) is for Cs, > Cao. The radius of the polar plot
indicates the upstream flow velocity V,%. The polar an-
gle 8, is measured from the vertical axis which is paral-
lel to the upstream magnetic field (B,). The nonlinear
isentropic wave solutions exist in the shaded regions as
indicated by the legends. No isentropic nonlinear wave
solutions have been found in the blank regions. The so-
lutions on the curves of the fast-mode, slow-mode, and
sound speeds are described as follows. The amplitude
of the inner loop solution 6 or 8 vanishes when V,, = Vg,
or V, = Vs, respectively, whereas the outer loop so-
lutions 5, 7, 9, or 0 may still be of finite amplitude. On
the other hand, when V, = Cgs,, the outer loop solu-
tions vanish but the inner loop solutions may still be of
finite amplitude.

3.5. Dispersion Effects

The formation of solitons is known to depend on the
balance between the nonlinear steepening and the wave
dispersion. Figure 8 shows the relationship between
the nonlinear steepening and the linear dispersion on
the density profile of a nonlinear wave. The steepening
occurs because the propagation speed increases with in-
creasing density. When the upstream flow speed V, is
greater than the phase speed in the long wavelength
limit V, as defined in Figure 8, a nonlinear compression
density profile can steepen as shown in panel 8a; when
V, < V., a rarefaction density profile can steepen as
shown in panel 85. A wave mode with dispersion char-
acterized by “decreasing phase velocity (w/k) with in-
creasing k” as shown in panel (1) can balance the steep-

Linear Dispersion ® Ve (1) @ (2)
Nonlinear Yo
Steepening /

K k
: (a) Vo>V [P(X) (a1){p(x) (a2)
p(x}
X X X
(B) Vg<V, b2
e o<Ve|p(x) (b1)| p(x) (b2)
x X X

Fig. 8. Illustrating of the balance between the nonlinear
steepening and the dispersion effects for a finite amplitude
compression or rarefaction density profile.
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W RH Polarized / compression soliton as Vo>Vimax / Whistler soliton
/ soliton solution

AX1 RH Polarized / rarefaction soliton as Vo<Vaxy / soliton solution @

F  RH Polarized / rarefaction soliton as V,<Vg

AX2 LH Polarized /compression soliton as V>V sy / soliton solution @

SL LH Polarized / compression soliton as V,>Vg, / soliton solution @

Fig. 9. Sketches of two-fluid linear wave dispersion relation
for obliquely propagating waves. (a) Cs > Vax; (b) Cs <
Vax (followed after Stringer [1963]; Formisano and Kennel
[1969)).

ening of the compression density profile to form a series
of compression solitons as shown in panel (al); but no
solitons can form for the rarefaction density profile; as
shown in panel (b!). By the same argument, if the dis-
persion is characterized by “increasing phase velocity
with increasing k” as shown in panel (2), a rarefaction
wave will steepen to form a series of rarefaction solitons
as shown in panel (b2); but no solitons can form for the
compression density profile, as shown in panel (a2).

Figure 9 sketches the two-fluid linear wave dispersion
relation for oblique propagation, where 9a is for Cs >
Vax and 9b is for Cs < Vax [Stringer, 1963; Formisano
and Kennel, 1969]. The dispersion effect on the shaded
segments will be shown to be related to the formation
of two-fluid solitons.

The dispersion characteristics depend on the mag-
netic field polarization as has been shown by Stringer
[1963] and Formisano and Kennel [1969]). When the wave
length approaches the ion scale length, w/kQ;, cos @, the
left-hand polarized wave will slow down due to increas-
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ing ion inertia loading; whereas, the right-hand polar-
ized wave will speed up due to decreasing ion inertia
loading. Likewise, when the wave length approaches the
electron scale length, w/kQ,, cos 6, the right-hand po-
larized wave will slow down due to increasing electron
inertia loading [Stringer, 1963; Formisano and Kennel,
1969]. Hence, the dispersion in the shaded segments
SL and AX2 are associated with left-hand polarized
waves; the dispersion in AX1, F and W are related to
right-hand polarized waves, as shown in the legends of
Figure 9.

The soliton solutions associated with the shaded seg-
ments are indicated in the legends of Figure 9. The
results are obtained based on the discussion in Figure 8
that compression soliton solutions exist if w /k decreases
with increasing k, and rarefaction soliton solutions exist
if w/k increases with increasing k. As can be seen in the
legends of Figure 9, for dispersion in the ion-scale length
(., in SL, AX1, AX2, and F) the magnetic field po-
larization is left-handed for the compression solitons,
and right-handed for the rarefaction solitons.

The soliton solutions 5, 6, 7, and 8 in Figure 4 can be
associated with the dispersions denoted by AX1, SL,
AX?2 and F in Figure 9, respectively. Likewise, the
whistler soliton solution [e.g., Kellogg, 1964; Kakutani et
al., 1967] can be associated with the dispersion in seg-
ment W. Based on the above association, the soliton
solution 6 can be called the “slow-mode soliton” as V,
decreases toward Vsg,, and the soliton solution 8 can
be called the “fast-mode soliton” as V, increases toward
Vro. Similar results can be obtained by the Korteweg-
deVries (KdV) equation for V, slightly greater than
Vspo or V, slightly less than Vg, [e.g., Churilov, 1980;
Kennel et al., 1988]. Note that the fast-mode and slow-
mode solitons can evolve into the Alfvén wave train so-
lutions 2 and 4, respectively, as V,, — V4x,. The evo-
lution takes place due to the increasing influence of the
Alfvén-mode dispersion as V, — V4 x,. The soliton so-
lutions 5 and 7 can exist only when V,, deviates slightly
from V4x,, and therefore can be called the “Alfvén-
mode solitons.” Similar results can be obtained by
the modified Korteweg-deVries (MKdV) equation [e.g.,
Churilov, 1980; Kennel et al., 1988).

It has been shown in Figure 6 that the Alfvén-mode
solitons 5 and T turn into the two-fluid rotational dis-
continuities 9 and 0 as V, further deviated from V,x.,.
The formation of the rotational discontinuities 9 and
0 is due to the conversion of the Alfvén mode into the
electrostatic ion acoustic mode [Stringer, 1963] when the
phase speed approaches the sound speed as can be seen
in Figure 9. Thus, the magnetic field of the two-fluid
rotational discontinuity stop rotating as Mg — 1.

4. CoMPARISON WITH OBSERVATIONS

In this section, the rotational discontinuity solutions,
wave train solutions, and soliton solutions obtained in
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Section 3, will be compared with the characteristics of
Alfvénic fluctuations observed in the solar wind.

4.1. Rotational Discontinuity

The thickness of the observed rotational discontinu-
ity in the solar wind is found to be a few tens of ion
gyroradii [e.g., Martin et al., 1973; Burlaga et al., 1977;
Lepping and Behannon, 1986]. The density fluctuations
observed in the rotational discontinuity can contribute
to the humped spectrum [Unti and Russell, 1976]. The
rate of magnetic field rotation across the discontinuity is
observed to be variable as shown in Figure 2 of Lepping
and Behannon [1986).

According to the pseudo potential structure shown in
section 3, rotational discontinuities (R-D) can be classi-
fied into (a) the MHD rotational discontinuity and the
two-fluid rotational discontinuity as discussed below:

The MHD R-D is characterized by a constant angular
rotation rate, with V, = V4 x, and a total rotation angle
less than 360°. The thickness is of ~ 10? to ~ 103
times the ion gyroradii which is much greater than the
thickness of the rotational discontinuity observed at the
magnetopause and in the solar wind.

The two-fluid R-D is given by 9 and 0 in Figure 6,
in which V, # V4x, and the total angle of rotation
must be less than 180° which is consistent with obser-
vations [e.g., Sonnerup and Cahill, 1968; Berchem and
Russell, 1982b] and simulation results [Swift and Lee,
1983]. The rate of angular rotation increases toward
the downstream side. The thickness ranges from ~10
to ~100 times the ion gyroradii, depending on the g,
#,, and M 4,, which is consistent with observations in
the solar wind [e.g., Martin et al., 1973; Burlaga et al.,
1977; Lepping and Behannon, 1986] and at the magne-
topause [e.g., Berchem and Russell, 1982a]. The density
fluctuation in the two-fluid R-D is a consequence of the
ion inertial effect which is believed to contribute to the
humped spectrum of magnetic field [Unti and Russell,
1976].

4.2. Identification of Nonlinear Alfvénic Fluctuations
With Finite-Extent Alfvén Wave Train Solutions

Observations show that the wave normal, fi, of the
Alfvénic fluctuations is highly parallel to the local av-
erage magnetic field, (B), with a half-width deviation
of 20° ~ 30° [e.g., Belcher and Davis, 1971; Daily, 1973,
Solodyna and Belcher, 1976; Denskat and Neubauer, 1982].
This observed feature of the Alfvénic fluctuation can be
understood in terms of nonlinear wave solutions as dis-
cussed below.

From the magnetic field hodogram of 1 ~ 8 shown
in Figure 4, the center of the hodogram is around
the point Z at which B; = 0, i.e., the average B,
(= ¥(Byo + by) + 8b,) in the wave transition region
nearly vanishes. Hence, the local average magnetic field,
(B), is approximately equal to XBg,. In other words,
(B} is highly aligned with the wave normal direction.
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Fig. 10. (a) The three-dimensional magnetic field line
structure of an obliquely propagating nonlinear Alfvénic
wave. The solid curve is the magnetic field line, the dashed
curves are the field line projections on the z-y, z-z, y-z
planes. (b) The field line projection on the ecliptic plane
for a nonlinear finite-extent Alfvén wave-train propagating
outward from the sun. It can be seen that the upstream
field B,, is different from the local average field {B), while
(B) is highly aligned with the wave normal 1.

The existence of finite-extent Afvén wave train solu-
tion has been discussed in section 3.2. The magnetic
field line configuration of such a solution for oblique
propagation can be sketched as illustrated in Figure 10a
to show the relationship of fi, B, and (B). Since the up-
stream magnetic field is given by B, = XB,, + ¥ Byo in
our formulation, the local average field (B) is shown to
be different from B,,. The assumption that B, ~ (B},
as has been commonly adopted in the literature, is in-
consistent with the solutions as shown in Figure 10a.
The solid curve in Figure 10a is the field line and the
dashed curves are the projection of the field line in the
z-y, ¢-2, and y-z, planes. Figure 10b sketches the mag-
netic field line projection on the ecliptic plane for a
finite-extent wave train propagating outward from the
Sun, in which the wave energy flows along the magnetic
field line but the wave normal direction is oblique to the
upstream magnetic field. As can be seen from Figure
10b, the local average field (B) is turned away from the
upstream B, direction to become aligned with fi when
a nonlinear hydromagnetic wave is passing through.
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Fig. 11. Power spectra of wave magnetic field of finite-extent Alfvén wave train soluions. The first curve

from the left is obtained for sampling length Ls = 4.8, while the length of the wave train is L1 = 4],
where A is the wavelength. The remaining curves are obtained for Ly > Lg and Ls is not a integer of

A as indicated on each curve. The power spectrum shows a frequency dependence of ~ f~

4 when the

sampling length cover the complete wave train, but shows a frequency dependence of 72~ f~18 when
the sampling length contains incomplete wave periods. The latter result is consistent with observations

[Belcher and Davis, 1971].

There are at least two possible causes for occasional
deviations between (B) and fi as observed. Accord-
ing to the results given in section 3, it can be shown
that the angular deviation between the two vectors (B)
and %B;, increases as the difference between V, and
Vaxo increases. However, this explanation is only good
for the short-wavelength Alfvénic fluctuations. For the
long-wavelength wave train structures, the deviation
may result from sampling over incomplete wave peri-
ods of a wave train structure. Sampling of incomplete
wave periods can also provide a power spectrum with
a frequency dependence of f~18 to f~2:0 ag gshown in
Figure 11. The latter result is consistent with the ob-
servations (f~1® to f~22) given by Belcher and Davis
[1971].

4.3. Enhanced Power Spectrum at High Frequency Range

The power spectrum of the observed Alfvénic fluctua-
tions exhibits a hump in the high frequency range when
the density fluctuation is present [e.g., Unti et al., 1973;
Unti and Russell, 1976; Neugebauer et al., 1978]. The fre-
quency of the hump is observed to be equivalent to a
few tens of ion gyroradii [e.g., Unti et al., 1973; Neuge-
bauer, 1975, 1976; Unti and Russell, 1976; Neugebauer et
al., 1978].

The power spectrum of soliton solutions obtained in
section 3 exhibits a plateau at frequency range which
depends on the scale length of the soliton solution. The
scale length of the soliton varies with upstream param-
eters 83, 6,, and M,,. The typical scale length is esti-
mated to be about a few tens of the ion inertial length.

Figure 12 shows numerical integration results of soli-
ton solution 6 as an example to illustrate the spatial
scale length and the power spectrum of the two-fluid
soliton solutions. The thickness of the soliton struc-
ture can be obtained based on the rulers shown on the
upper-left corner. The unit of the first ruler, V, /€, is
the length scale used in the governing equations. The
unit of the second ruler, C4,/€;,, is the ion inertial
length (c¢/wpi). The unit of the last two rulers, Vi, /€,

(with Vp, = 8Y2C4,) and Cs,/R;,, have been iden-
tified as the jon Larmor radius (Rg) respectively by
Lepping and Behannon [1986] and Stringer [1963]. The
maximum variation of —AW in the first plot is less than
107° which indicates that the magnetic field hodogram
of the solution follows closely the equipotential contour,
which confirms the argument used in obtaining the an-
alytic solutions discussed in section 3. Variations of
B*(z) and p*(z) are out of phase as one of the char-
acteristics of the analytic solution in 6. The rotation
angle ¢ shows a variable rotation rate. Spatial pro-
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Spatial profiles of a numerical soliton solution 6, and power spectra of the soliton magnetic

field. The power spectra are plotted in arbitrary scale, in which the dotted, dashed, and solid curves are

for by (w)’, b,

files of b; and b} are shown on the lower-left corner,
whereas, by(7) and b;(7) are shown on the lower-right
corner, where 7 = fd:r./V,,(z:). The power spectra are
obtained by sampling b,(7) and b}(7) curves in equal
spacing. The power spectra are plotted in arbitrary
scale, in which the dotted, dashed, and solid curves
are for by(w)?, b,(w)?, and by(w)? + b;(w)?, respec-
tively. The plateau in the power spectrum is located
at w = 0.19;, ~ 0.019;, which is in reasonable agree-
ment with observations [e.g., Unfi and Russell, 1976]. A
spiky structure appears near the lower hybrid frequency,
indicating the presence of lower hybrid waves.

5. DiscussioN

Most of the early theoretical works [e.g., Kakutani
et al., 1967; Crevier and Tidman, 1970] claimed that

(w)?, and by(w)? + b, (w)?, respectively.

V, — oo when the local flow speed is equal to the sound
speed, so that the quasi-neutrality assumption is inade-
quate as Ms — 1. We have shown that V; is finite when
Ms — 1. In addition, by considering the two-fluid lin-
ear dispersion relation, if the quasi-neutrality assump-
tion is removed, the ion acoustic mode will have an ad-
ditional dispersion near the ion Debye length [Stringer,
1963], which can lead to the formation of the ion acous-
tic soliton. However, it can be shown that the conver-
sion of Alfvén mode to the ion acoustic wave can occur
with or without the quasi-neutrality assumption. Hence
the two-fluid rotational discontinuity solution obtained
in this paper is a valid solution.

The parallel [Spangler and Sheerin, 1982; Zharova and
Litvak, 1982; Ovenden et al., 1983; Spangler et al., 1985]
and quasi-parallel [Kennel et al., 1988] Alfvén envelop
soliton solutions have been obtained from the deriva-
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tive nonlinear Schrédinger (DNLS) equation. The par-
allel nonlinear Alfvén envelop solitons are shown to be
unstable [Machida et al., 1987] and nonlinearly damped
[Mjolhus and Wyller, 1986]. The nonlinear damping is
due to the combined effects of modulational instability
and the resonant particle damping which is a kinetic
effect in a finite-8 plasma. The kinetic effect is absent
in our model; parallel Alfvén soliton solutions are also
absent in our model. We believe that the nonexistence
of parallel Alfvén solitons in the two-fluid plasma in-
dicates that these waves are either unstable or subject
to disintegration regardless whether or not the kinetic
effect is present in the model.

6. SUMMARY

We have presented a comprehensive set of nonlinear
one-dimensional constant-profile isentropic wave solu-
tions in finite-temperature two-fluid collisionless plas-
mas. These solutions not only can explain a variety
of published observational results on Alfvénic fluctua-
tions in the solar wind, but also predict certain features
of nonlinear hydromagnetic waves for further observa-
tional study.

The oblique Alfvén wave train solutions, in the long
wavelength limit, can explain the high degree of align-
ment between the local average magnetic field and the
wave normal direction observed in the solar wind.

The two-fluid rotational discontinuity solution ob-
tained in this study is highly circularly polarized, with
scale length a few tens ion inertial length. The up-
stream flow speed of the rotational discontinuity must
deviate slightly from the Alfvén-mode speed. This so-
lution predicts that the downstream flow speed of the
two-fulid rotational discontinuity must be equal to the
local sound speed. This result is due to the wave disper-
sion which converts the Alfvén mode to the ion acous-
tic mode to form the two-fluid rotational discontinuity.
The variable rotation rate, the 180° rotation limit, and
the thickness of the two-fluid rotational discontinuity
provide a satisfactory theoretical explanation for the
rotational discontinuity structures observed in the solar
wind.

For upstream flow speed less than the fast-mode
speed, soliton solutions include rarefaction fast solitons,
compression slow solitons, and Alfvén solitons. The
Alfvén solitons are super-Alfvénic compression waves
if the upstream Alfvén-mode speed is greater than the
sound speed; otherwise, they are sub-Alfvénic rarefac-
tion waves. The scale length of these soliton solu-
tions are all of a few tens of ion inertial length. The
power spectrum of the soliton solutions can explain the
observed power spectrum which exhibits an enhanced
hump in high frequency range.

The density and magnetic field variations of nonlin-
ear hydromagnetic waves with upstream flow speed less
than the fast mode speed are shown to obey the follow-
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ing two rules. (1) All compression waves are left-hand
polarized and all rarefaction waves are right-hand po-
larized, due to the ion inertial effect. (2) The density
variation and the magnetic field magnitude variation
are in phase if the flow is supersonic, but out of phase if
the flow is subsonic. The result in (2) is a consequence
of the conservation of momentum flux.
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