IBM Fast_Fourier_Transfer
modified by Ling-Hsiao Lyu

last updated 24-May-2014


Discription File

fft_sum.txt
FFT1CC_Discription.pdf (by Ling-Hsiao Lyu, NCU)
http://ccjou.wordpress.com/2012/05/25/快速傅立葉轉換/
http://en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm
FFT ppt (by Dr. Naim Dahnoun, Bristol University)


Single Precision Version

FFT1CC.f 1-D FFT Complex<-->Complex
FFT1RC.f 1-D FFT Complex<-->Real
FFT3CC.f 3-D FFT Complex<-->Complex
FFT3RC.f 3-D FFT Complex<-->Real



Double Precision Version

dFFT1CC.f 1-D FFT Complex<-->Complex
dFFT1RC.f 1-D FFT Complex<-->Real
dFFT3CC.f 3-D FFT Complex<-->Complex
dFFT3RC.f 3-D FFT Complex<-->Real



Examples

test_fftall_sinJ1X_cosJ2X_J0cycle.f

test FFT1CC, FFT1RC, FFT3CC, FFT3RC, and use FFT3RC to study the differentiations of
F=sin(J1*X), G=cos(J2*X), and H=F*G over J0*2*pi period.

test_Dfftall_sinJ1X_cosJ2X_J0cycle.f test dFFT1CC, dFFT1RC, dFFT3CC, dFFT3RC, and use dFFT3RC to study the differentiations of
F=sin(J1*X), G=cos(J2*X), and H=F*G over J0*2*pi period.
test_fft.f Using FFT to determine the 1st and the 2nd derivatives of a function f(x)
1peak_convolution.f
1peak-256-128.pdf
1peak-256-240.pdf
2peak_convolution.f
2peak-256-240.pdf
Using FFT to determine the data shift between two similar data sets f(x) and g(x)
i.e., For h(x0)=Int[f(x)g(x-x0)dx]
determine x0



Contact information:

886-3-4227151 ext. 65771 lyu@jupiter.ss.ncu.edu.tw