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Abstract

An algorithm for cross-scale plasma simulation is
proposed in this study. Governing equations for cross-
scale plasma simulations are derived analytically and self-
consistently in three time scales: the electron time scale,
the ion time scale, and the macro time scale, which ranges
from quasi-MHD time scale to MHD time scale. Coupling
effects between different time scales are included in each
set of governing equations.  In our model, large-scale
low-frequency simulations will provide initial and
boundary conditions for small-scale high-frequency
simulations.  Whereas, anomalous dissipations due to
wave-wave and wave-particle interactions can be
obtained from small-scale high-frequency simulations at a
few sampled points and will be feedback into large-scale
low-frequency simulation.  Numerical methods that are
appropriate for this cross-scale simulation model will also
be discussed.

I. Introduction

Cross-scale couplings are commonly observed in
space plasmas.  In most cases, free energy of disturbances
comes from large-scale plasma motions and energy stored
in the magnetic field, whereas, energy and momentum
transports are usually accomplished by small-scale
disturbances including interactions of nonlinear waves
and relaxation of plasmas from non-thermal-dynamic-
equilibrium states.  As a result, development of cross-
scale simulation model has been the up-to-date research
direction in recent years.  

The objective of this study is to design a theoretical
model for cross-scale plasma simulation, that can not only
simulate large-scale energy and momentum input and
output processes efficiently, but can also handle the
small-scale energy transport processes in an appropriate
and self-consistent manner.

II. Formulation of Cross-Scale Plasma
Equations

Governing equations for cross-scale plasma
simulations can be formulated in three distinct time
intervals: (1) the electron-scale time interval, which
ranges approximately from 0.1τ e  to 0.1τ i ; (2) the ion-
scale time interval, which ranges approximately from
0.1τ i  to 100τ i ; and (3) the macro-scale time interval,
which ranges from quasi-MHD time scale (100τ i ) to

MHD time scale (τ τ>> i), where τ e  andτ i  are the
characteristic time scale for electrons and ions,
respectively.   

1. Basic equations for electron-time-scale
plasma

Full particle simulation codes are commonly used for
studying electron time scale plasma phenomena.  Based
on our previous experiences in electromagnetic particle
code simulation at electron time scale (Chu and Lyu,
1986; Lin and Lyu, 1995), we found that simulation is
more stable if all electrons follow relativistic momentum
equation and when the radiation term is included in the
Maxwell’s equations.  However, the discrete nature in
particle code simulation can give rise to difficulties on
handling particle fluxes at matching boundaries between
small-scale simulation and large-scale simulation.  We are
forced to give up particle code simulation in this study.
All the kinetic simulations will be carried out by directly
solving Vlasov equations in phase space.  To formulate
the relativistic electron Vlasov equation, we first derive
the Klimontovich equation (e.g., Nicholson, 1983) for
relativistic electrons, then take ensemble average of the
Klimontovich equation, and then assume that the
ensemble average of the micro-scale wave-particle
interactions can be ignored in a collisionless plasma.  As a
result, we can obtain the relativistic electron Vlasov
equation in the following format:
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where superscript e denotes electron time scale variables,  

v u u( ) ( )= γ u , and γ ( ) ( / )u u c= +1 2 .  Boundary

conditions of ( )1e  at u → ∞, satisfy fe
e → 0 and

∂ ∂fe
e u → 0 .  
Other basic equations in the electron-time-scale

simulation include the Maxwell’s equations,
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and the definition of charge density and electric current
density,
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where ion density and ion flow velocity can be obtained
from ion-time-scale simulation and can be considered
unchanged during the entire electron-time-scale
simulation period (~ 0.1τ i ).

From ( )1e , ( )2e , and ( )3e , we can obtain governing
equations for electron-time-scale simulation, which are
summarized in Table 1.

2. Basic equations for ion-time-scale plasma

Hybrid simulation code with particle ions and fluid
electrons are commonly used to study ion-scale plasma
phenomena (e.g., Swift and Lee, 1983; Lyu and Kan,
1993).  Ion kinetic effects are fully included in the hybrid
code simulations but without any information from
electron-scale wave-particle and wave-wave interactions.
Thus, it is our goal to incorporate modulations of these
high frequency interactions in our ion-time-scale plasma
equations.

To  avoid problems due to discrete particle flux at
boundaries, ions’ Vlasov equation will be used to study
kinetic behavior of ions in phase space.
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where superscript i denotes ion time scale variables.
Boundary conditions of ( )1i  at v v c→ <<max , satisfy

f i
i → 0 and ∂ ∂f i

i v → 0 .  
Ion-time-scale Maxwell’s equations can be obtained

by taking time average of Maxwell’s equations ( )2e ,
which yields,
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where we have ignore the displacement current in the
Ampere’s Law for ion-time-scale plasma. Since the ion-
time-scale charge density ρc

i  is very small, we shall not

use the Poisson equation in ( )2i  to determine ion-time-

scale electric field Ei .  Taking time average of equations
( )3e , yields,
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Thus, from ( )3i , we obtain ion-time-scale electron
number density and flow velocity directly from ion-time-
scale simulation, i.e.,
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where J i  can be determined from magnetic field based
on the Ampere’s law.  For simplicity, from now on, we
shall use ni  to denote both ion number density and
electron number density in ion time scale formulation.

The basic equations in ion time scale also include the
electron’s fluid equations. Ion-time-scale electron

continuity equation can be obtained from ( )1 3e

i
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which yields,
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This equation (5) together with ions continuity equation
can also be obtained from the divergence of Ampere’s
law.  Ion-time-scale electron momentum equation can be

obtained from m d ue
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where meu  is the momentum of electrons with velocity

equal to v u u( ) /[ ( / ) ] /= +1 2 1 2u c . To formulate
anomalous dissipation term, we need compare (6) with
the momentum equation of ideal electron fluid,
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where electron pressure is assumed to be isotropic and
low-frequency modulations from high-frequency wave-
wave interactions are ignored.  If we define
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(6) can be rewritten as,
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which is the average momentum of relativistic electrons.
(If most of the electrons are non-relativistic electrons, we
could have U Ve

i
e

i≈ .)  Since m me i<< , (9) can be
approximately leads to
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Therefore, we can obtain ion-time-scale Ohm’s law,

E V B Fi
e

i i
i e

i
e

i

en
p≈ − × + −∇ +[ ]1 δ             (11a)

or from (4), we have

E V B J B Fi
i
i i

i e
i i i

e
i

en
p≈ − × + −∇ + × +[ ]1 δ             (11b)

As we can see, in addition to the so-called Hall current
effect in (11b), the anomalous dissipation term δFe

i  may
play an essential role on the current dissipation during fast
energy release processes, such as magnetic reconnection,
in space plasmas.  Since electromagnetic energy
dissipation can be evaluated by J E⋅ , the Hall current
term has no direct contribution to the electromagnetic
energy dissipation.  The pressure gradient term in (11b)
can build up an electrostatic potential, which may not
associate with the dissipation of energy stored in the
magnetic field.  Therefore, δFe

i  may be the only one that
can provide  anomalous resistivity in collisionless plasma.
Physical processes associated with δFe

i  can be seen from
the three terms on the left-hand side of equation (8).  The
first term represents a viscous force due to anisotropic
pressure in electron fluid.  The second term can be
identified as the classical ponderomotive force in
electrostatic plasma (e.g., Nicholson, 1983).  The third
term may be considered as an electromagnetic version of
ponderomotive force in the collisionless plasma.

Ion-time-scale electron energy equation can be
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where m c ue

2 1( ( ) )γ −  is the kinetic energy of electrons

with velocity equal to v u u( ) /[ ( / ) ] /= +1 2 1 2u c .  For
u c<< , we should use Taylor’s expansion in
evaluating m c ue

2 1( ( ) )γ −  to reduce numerical error in the
calculation. To formulate anomalous dissipation term, we
need compare (12) with the energy equation of ideal
electron fluid,
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and the electron pressure can be obtained from Ke
i , i.e,
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where the total kinetic energy of relativistic electron fluid
in the ion time scale is defined by
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But it will be solved from (16) in our ion-time-scale
simulation model.

From equations ( )1i ~(16), we can obtain governing
equations for ion-time-scale simulation, which are
summarized in Table 2.  Algorithm for solving this set of
equations will be discussed in section III.

3. Basic equations for quasi-MHD and MHD
time scale plasma

Basic equations for MHD time scale plasma consist
of Maxwell’s equations and one-fluid plasma equations.
Maxwell’s equations in MHD time scale can be obtained
from time average of ( )2i , which yields
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where superscript MHD denotes MHD-time-scale
variables. Since the MHD-time-scale charge density
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in ( )2 MHD  to determine MHD-time-scale electric field
EMHD .  One fluid continuity equation can be obtained

from m m d ve i
i

MHD
( ) ( )5 1 3+ ∫∫∫ , which yields,

∂
∂

ρ ρ
t

MHD MHD MHD( ) + ∇ ⋅( ) =V 0 (17)

where notation Ai

MHD
 denotes A t dti

i
i

0
100 100τ τ∫ ( ) ,

and the following definitions of one-fluid mass density
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The ion number density and flow velocity in the MHD
time scale can then be determined directly from these
one-fluid variables
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They will serve as the boundary and initial condition for
ion-time-scale simulation.  Likewise, we have
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Following the similar procedure as described in the last
section, we can define an anomalous dissipation force
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so that (20) can be rewritten in the conventional form
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m me i<< .  One fluid energy equation can be obtained
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Again, we can define an anomalous dissipation term
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Namely, we can solve K MHD  from (25) and determine
pMHD  from (29).  

To obtain MHD-time-scale electric field, we need to
derive the Ohm’s law in MHD time scale. We first take
time average of ion-time-scale Ohm's law, ( )11
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Following the similar procedure as described in the last
section, we can define an anomalous dissipation force
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so that (30) can be rewritten in a more conventional form
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MHD  in the Ohm’s law (33), we
need to evaluate electron energy equation in the MHD
time scale.  From ( )16
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Following the similar procedure as described in the last
section, we can define an anomalous dissipation term
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so that (34) can be rewritten in the conventional form
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From definition, we have  
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Therefore, we can solve Ke
MHD  from (36) and determine

pe
MHD  from (37).

From equations ( )2MHD  and (17)~(37), we can obtain
governing equations for MHD-time-scale simulation,
which are summarized in Table 3.  Algorithm for solving
this set of equations will be discussed in the next section.

III. Algorithm for Cross-Scale Simulation

Coupling effects between different time scales are
included in each set of governing equations.  In our model,
large-scale low-frequency simulations will provide initial
and boundary conditions for small-scale simulations.  On
the other hand, anomalous dissipations due to wave-wave
and wave-particle interactions can be obtained from
small-scale high-frequency simulations and will be
feedback into large-scale low-frequency simulation.
Global distribution of anomalous dissipation terms can be
obtained from a few sampled points where small-scale
high-frequency simulations were carried out.  Since
small-scale simulations need to be carried out at sampled
points near strong gradient region, boundary conditions of
small-scale simulations are generally non-periodic.  Due
to the discrete nature in the traditional particle code
simulation, it will be rather difficult to handle particle
flux at boundaries with this type of non-periodic
boundary conditions.  Therefore, we suggest solving
electrons’ and ions’ Vlasov equation directly in the phase
space.  The derivatives and integrations in the velocity
and space domain can be obtained from cubic-spline
method.  Higher order predict-and-correct scheme is
recommended to solve the set of first-order time-
derivative differential equations in each time intervals.  
An adaptive scheme is recommended to determine where
the small-scale simulations need to be carried out near
strong gradient region.  The coupling variables: δFe

i ,

δεe
i ,  δFe

MHD , δFMHD , δεe
MHD , and δε MHD , can be

evaluated directly at these sample points, where small-
scale high-frequency simulations are carried out.  Since
the anomalous dissipations are usually small and can be
ignored in small gradient regions, the global distribution
of these coupling variables can then be obtained from an
interpolated fitting function, such as cubic spline, over
these sample points and with uniform and zero boundary
conditions at zero gradient region.

IV. Summary

A cross-scale simulation scheme has been proposed
in this study.  Governing equations for electron-scale, ion-
scale, and macro-scale simulations are summarized in
Tables 1, 2, and 3, respectively.  Under the assumption

that small-scale high-frequency wave-wave and wave-
particle interactions can lead to a low-frequency impact
on large-scale phenomena, anomalous dissipations are
evaluated by taking differences between (A) and (B),
where (A) is a time-averaging of high-frequency
momentum or energy equation, and (B) is the
conventional formulation of low-frequency momentum or
energy equation of an isentropic plasma.  As a result,
anomalous dissipations are fully included in the coupling
variables δFe

i , δεe
i ,  δFe

MHD , δFMHD , δεe
MHD , and

δε MHD  in Table 2 and Table 3.  A brief discussion on the
physical processes associated with δFe

i  has been given in
section II.  Similar physical processes can be expected for
other coupling variables.  The values of these coupling
variables can be obtained directly from the sampled
points, where small-scale simulations are carried out.  A
global distribution of these variables can then be obtained
from an interpolated fitting function over these sampled
points.  As a result, the cross-scale simulation scheme
proposed in this study can model plasma processes from
MHD-scale to electron-scale.  This simulation scheme
requires much less memory space and computing time in
comparison with a simulation carried out by a single high-
frequency simulation code.
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Table 1. Governing equation for electron-time-scale
simulation.
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Table 2. Governing equation for ion-time-scale
simulation.
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Table 3. Governing equation for MHD-time-scale
simulation.
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